×

zbMATH — the first resource for mathematics

Deux remarques sur les espaces de Banach stables. (Two remarks on stable Banach spaces). (French) Zbl 0696.46018
Krivine-Maurey’s result, “Every stable infinite dimensional Banach space contains a subspace \((1+\epsilon)\)-isomorphic to \(\ell_ p\) for some \(p\in [1,\infty]''\) is given a new proof using the notion of ordinal indices.
Reviewer: J.Szulga

MSC:
46B20 Geometry and structure of normed linear spaces
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] D. Aldous : subspaces of L’ via random measures , Trans Amer Math Soc. 258 (1981) 445-463. · Zbl 0474.46007
[2] S. Argyros , S. Negrepontis et Th. Zachariades : Weakly stable Banach spaces , Israel Journal of Math. 57 No: 1 (1987) 68-88. · Zbl 0639.46018
[3] J. Bourgain , H.P. Rosenthal et G. Schechtman : An ordinal Lp-index for Banach spaces, with application to complemented subspaces of Lp , Ann of Math. Ser 2, 114 (1981) 193-228. · Zbl 0496.46010
[4] C. Dellacherie : Les dérivations en théorie descriptive des ensembles et le théorème de la borne , Séminaire de Proba XI, Université de Strasbourg. Lecture Notes 581. Springer (1977) pp. 34-46. · Zbl 0366.02045
[5] S. Guerre : Sur les espaces stables universels , Studia Math. T 81 (1985) 221-229. · Zbl 0589.46014
[6] J.L. Krivine : Sous-espaces de dimension finie des espaces de Banach réticulés , Ann of Math. 104 (1976) 1-29. · Zbl 0329.46008
[7] J.L. Krivine et B. Maurey : Espaces de Banach stables , Israel Journal of Math. 39 (1981) 273-295. · Zbl 0504.46013
[8] H. Lemberg : Nouvelle démonstration d’un théorème de J.L. Krivine sur la finie représentation de lp dans un espace de Banach , Israel Journal of Math. 39 (1981) 341-348. · Zbl 0466.46023
[9] J. Lindenstrauss et L. Tzafriri : Classical Banach spaces I, Ergebnisse der Mathematik and ihrer Grenzgebiete 92 , Springer-Verlag (1977). · Zbl 0362.46013
[10] W. Szlenk : The non existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces , Studia Math. T 30 (1968) 53-61. · Zbl 0169.15303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.