zbMATH — the first resource for mathematics

On the equivalence of the Schrödinger and the quantum Liouville equations. (English) Zbl 0696.47042
The author treats the quantum Liouville equation \[ \partial w/\partial t+m^{-1}\vec v\cdot \text{grad}_{\vec x}w=\Theta (\vec x,\partial_{\vec v})w=0,\quad t\in {\mathbb{R}}, \] in the phase-space \({\mathbb{R}}^ d\times {\mathbb{R}}^ d\), where \(\vec x\in {\mathbb{R}}^ d\) denotes position, \(\vec v\in {\mathbb{R}}^ d\) denotes momentum, m is particle mass, and \(\Theta\) (\(\vec x,\partial_{\vec v})\) is the pseudo-differential operator \((1/ih)[\psi (\vec x+(ih/2)\partial_{\vec v})-\psi (\vec x- (ih/2)\partial_{\vec v})],\) \(\psi\) \(=\) the potential energy. The equation governs the evolution of the quasi-distribution w(\(\vec x,\vec v,t)\) of an electron ensemble under the action of a scalar potential \(\psi\). The author proves that this quantum Liouville operator generates a strongly continuous group of operators if the Hamiltonian \(H=-(h^ 2/2m)\Delta +\psi\) is essentially selfadjoint in \(L^ 2({\mathbb{R}}^ d)\). The equation is applicable to the simulation of submicron semi-conductor devices, whose performance relies upon tunnelling effects.
Reviewer: G.F.Webb

47D03 Groups and semigroups of linear operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI
[1] ’Heavy ion Dynamics at intermediate energy’, Cyclotron Laboratory and Physics Department, Michigan State University, East Lansing, Michigan 48824, U.S.A., 1980.
[2] Linear Integral Operators (translated by ), Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982.
[3] Perturbation Theory for Linear Operators, Springer Verlag, Berlin-Heidelberg-New York, 1966.
[4] , and , ’Quantum tunneling properties from a Wigner Function study’, Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287, U.S.A., 1987.
[5] and , Lehrbuch der Theoretischen Physik III: Quantenmechanik, 2nd edn, Akademie Verlag, Berlin, 1966.
[6] and , ’An analysis of the quantum Liouville equation’, submitted, 1987.
[7] ’The nuclear Vlasov equation–methods and results that can (not) be taken over from the ”classical” case’, Proc. Workshop on Fluid Dynamical Approaches to the Many-Body Problem: Fundamental and Mathematical Aspects, Societa Italiana di Fisica, 1984.
[8] Private communication, 1987.
[9] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1983. · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[10] Communtation Properties of Hilbert Space Operators and Related Topics, Springer Verlag, Berlin-Heidelberg-New York, 1967. · doi:10.1007/978-3-642-85938-0
[11] and , Methods of Modern Mathematical Physics II: Fourier Analysis, Academic Press, New York-London, 1972.
[12] and , Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York-San Francisco-London, 1975. · Zbl 0308.47002
[13] Simader, Math. Z. 138 pp 53– (1974)
[14] Simon, Arch. Rat. Mech. Anal. 52 pp 44– (1973)
[15] Tatarskii, Sov. phys. Usp. 26 pp 311– (1983)
[16] Wigner, Phys. Rev. 40 pp 749– (1932)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.