×

zbMATH — the first resource for mathematics

A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. (English) Zbl 1423.76228
Summary: A novel iterative algorithm, called the bi-partitioned method, is introduced for efficiently solving the system of linear equations that arises from the stabilized finite element formulation of the Navier-Stokes equations. The bi-partitioned algorithm is a Krylov subspace method designed for a matrix with separated momentum and continuity blocks. This structure allows for formation of the Schur complement to separately solve for the velocity and pressure unknowns. Hence, the bi-partitioned algorithm can also be applied to problems with similar matrix structure, involving the Schur complement. Two separate spaces are constructed iteratively from the velocity and pressure solution candidates and optimally combined to produce the final solution. The bi-partitioned algorithm calculates the final solution to a given tolerance, regardless of the approximation made in construction of the Schur complement. The proposed algorithm is analyzed and compared to the generalized minimal residual (GMRES) algorithm using two incompressible-flow and one fluid-structure-interaction example, exhibiting up to an order of magnitude improvement is simulation cost while maintaining excellent stability.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
SPIKE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Esmaily-Moghadam, M.; Vignon-Clementel, I.; Figliola, R.; Marsden, A., A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, J. Comput. Phys., 224, 63-79 (2013) · Zbl 1377.76041
[2] Esmaily-Moghadam, M.; Hsia, T.-Y.; Marsden, A., The assisted bidirectional Glenn: a novel surgical approach for first stage single ventricle heart palliation, J. Thorac. Cardiovasc. Surg. (2014), Published online
[3] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wuchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades, Internat. J. Numer. Methods Fluids, 65, 1-3, 236-253 (2011) · Zbl 1428.76087
[4] Long, C.; Marsden, A.; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput. Mech., 52, 5, 971-981 (2013) · Zbl 1388.74039
[5] Takizawa, K.; Moorman, C.; Wright, S.; Purdue, J.; McPhail, T.; Chen, P.; Warren, J.; Tezduyar, T., Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms, Internat. J. Numer. Methods Fluids, 65, 308-323 (2011) · Zbl 1203.92044
[6] Vignon-Clementel, I.; Figueroa, C.; Jansen, K.; Taylor, C., Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries, Comput. Meth. Biomech. Biomed. Eng., 13, 5, 625-640 (2010)
[7] Kim, H.; Vignon-Clementel, I.; Figueroa, C.; Ladisa, J.; Jansen, K.; Feinstein, J.; Taylor, C., On coupling a lumped parameter heart model and a three-dimensional finite element aorta model, Annu. Rev. Biomed. Eng., 37, 2153-2169 (2009)
[8] Esmaily-Moghadam, M.; Migliavacca, F.; Vignon-Clementel, I.; Hsia, T.; Marsden, A., Optimization of shunt placement for the Norwood surgery using multi-domain modeling, J. Biomech. Eng., 134, 5, 051002 (2012)
[9] Sankaran, S.; Marsden, A. L., A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations, J. Biomech. Eng., 133, 3, 031001 (2011)
[10] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[11] Shakib, F.; Hughes, T.; Johan, Z., A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis, Comput. Methods Appl. Mech. Engrg., 75, 1-3, 415-456 (1989) · Zbl 0687.76065
[12] Saad, Y.; Sosonkina, M.; Zhang, J., Domain decomposition and multi-level type techniques for general sparse linear systems, Contemp. Math., 218, 174-190 (1998) · Zbl 0909.65020
[13] Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2014), Oxford University Press · Zbl 1304.76002
[14] Olshanskii, M. A.; Vassilevski, Y. V., Pressure Schur complement preconditioners for the discrete Oseen problem, SIAM J. Sci. Comput., 29, 6, 2686-2704 (2007) · Zbl 1252.65070
[15] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, Tech. Rep. YALEU/DCS/RR-254 (1983), Department of Computer Science, Yale University
[16] Hughes, T. J.; Ferencz, R. M.; Hallquist, J. O., Large-scale vectorized implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradients, Comput. Methods Appl. Mech. Engrg., 61, 2, 215-248 (1987) · Zbl 0606.73096
[17] Manguoglu, M.; Takizawa, K.; Sameh, A. H.; Tezduyar, T. E., A parallel sparse algorithm targeting arterial fluid mechanics computations, Comput. Mech., 48, 3, 377-384 (2011) · Zbl 1398.76115
[18] Manguoglu, M.; Sameh, A. H.; Tezduyar, T. E.; Sathe, S., A nested iterative scheme for computation of incompressible flows in long domains, Comput. Mech., 43, 1, 73-80 (2008) · Zbl 1279.76024
[19] Ghia, U.; Ghia, K. N.; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[20] Vaněk, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) · Zbl 0851.65087
[21] Manguoglu, M.; Takizawa, K.; Sameh, A. H.; Tezduyar, T. E., Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement, Internat. J. Numer. Methods Fluids, 65, 1-3, 135-149 (2011) · Zbl 1427.76285
[22] Polizzi, E.; Sameh, A. H., A parallel hybrid banded system solver: the SPIKE algorithm, Parallel Comput., 32, 2, 177-194 (2006)
[23] Manguoglu, M.; Sameh, A. H.; Saied, F.; Tezduyar, T. E.; Sathe, S., Preconditioning techniques for nonsymmetric linear systems in the computation of incompressible flows, J. Appl. Mech., 76, 2, 021204 (2009)
[24] Babuška, I., Error-bounds for finite element method, Numer. Math., 16, 4, 322-333 (1971) · Zbl 0214.42001
[25] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, ESAIM Math. Model. Numer. Anal.-Modél. Math. Anal. Numér., 8, R2, 129-151 (1974) · Zbl 0338.90047
[26] Brooks, A.; Hughes, T., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[27] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[28] Whiting, C.; Jansen, K., A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, Internat. J. Numer. Methods Fluids, 35, 1, 93-116 (2001) · Zbl 0990.76048
[29] Franca, L.; Frey, S., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 99, 2-3, 209-233 (1992) · Zbl 0765.76048
[30] Tezduyar, T.; Mittal, S.; Ray, S.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. Methods Appl. Mech. Engrg., 95, 2, 221-242 (1992) · Zbl 0756.76048
[31] Jansen, K.; Whiting, C.; Hulbert, G., A generalized-[alpha] method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 3-4, 305-319 (2000) · Zbl 0973.76048
[32] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-436 (1952) · Zbl 0048.09901
[33] Esmaily-Moghadam, M.; Bazilevs, Y.; Marsden, A. L., A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics, Comput. Mech., 52, 5, 1141-1152 (2013) · Zbl 1388.76130
[34] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[35] Tiller, W.; Piegl, L., The NURBS Book (1996), Springer-Verlag
[36] Sengupta, D.; Kahn, A.; Burns, J.; Sankaran, S.; Shadden, S.; Marsden, A., Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease, Biomech. Model. Mechanobiol., 11, 915-932 (2012)
[37] Esmaily-Moghadam, M.; Hsia, T.-Y.; Marsden, A., A non-discrete method for computation of residence time in fluid mechanics simulations, Phys. Fluids, 25, 11 (2013), 110802
[38] Sengupta, D.; Kahn, A.; Kung, E.; Esmaily-Moghadam, M.; Shirinsky, O.; Lyskina, G.; Burns, J.; Marsden, A., Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease, Biomech. Model. Mechanobiol., 1-16 (2014)
[39] Esmaily-Moghadam, M.; Bazilevs, Y.; Marsden, A., Impact of data distribution on the parallel performance of iterative linear solvers with emphasis on cfd of incompressible flows, Comput. Mech. (2014), Published online · Zbl 1311.76057
[40] Wall, W., Fluid-struktur-interaktion mit stabilisierten finiten elementen (2000), Institut fur Baustaik, Universitat Stuttgart, (Ph.D. thesis)
[41] Bazilevs, Y.; Calo, V.; Hughes, T.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[42] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), John Wiley & Sons Ltd. · Zbl 0980.74001
[43] Tezduyar, T. E.; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 195, 17, 2002-2027 (2006) · Zbl 1118.74052
[44] Tezduyar, T. E.; Sathe, S., Modelling of fluid-structure interactions with the space-time finite elements: solution techniques, Internat. J. Numer. Methods Fluids, 54, 6-8, 855-900 (2007) · Zbl 1144.74044
[45] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational Fluid-Structure Interaction: Methods and Applications (2013), Wiley · Zbl 1286.74001
[46] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Engrg., 119, 1, 73-94 (1994) · Zbl 0848.76036
[47] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J. Appl. Mech., 70, 58-63 (2003) · Zbl 1110.74689
[48] Esmaily-Moghadam, M.; Bazilevs, Y.; Hsia, T.; Vignon-Clementel, I.; Marsden, A., A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput. Mech., 48, 3, 277-291 (2011) · Zbl 1398.76102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.