×

zbMATH — the first resource for mathematics

W-algebras from Heisenberg categories. (English) Zbl 1405.81045
In this paper it is shown that the trace (corresponding to the zeroth Hochschild homology) of the Khovanov Heisenberg category is isomorphic to a quotient of the algebra \(W_{1+\infty}\). This fact enables the authors to define an action of the latter algebra on the centre of the so-called categorified Fock space representation that results in an identification of the \(W_{1+\infty}\)-algebra on symmetric functions. The results are used to deduce interesting isomorphisms between representations of the corresponding categories.

MSC:
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
20C08 Hecke algebras and their representations
17B65 Infinite-dimensional Lie (super)algebras
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
30H20 Bergman spaces and Fock spaces
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arbesfeld, N.; Schiffmann, O., A presentation of the deformed W_1+ algebra, Springer Proc. Math. Stat., 40, 1-13, (2013) · Zbl 1310.16024
[2] Awata, H.; Fukuma, M.; Matsuo, Y.; Odake, S., Determinant formulae of quasi-finite representation of 𝓦_1+ algebra at lower levels, Phys. Lett. B, 332, 3-4, 336-344, (1994) · Zbl 0894.17020
[3] Beliakova, A.; Guliyev, Z.; Habiro, K.; Lauda, A.
[4] Beliakova, A.; Habiro, K.; Lauda, A.; Webster, B.
[5] Beliakova, A.; Habiro, K.; Lauda, A.; Zivkovic, M., Trace decategorification of categorified quantum sl_2, Acta Math. Vietnam., 39, 4, 425-480 · Zbl 1331.81153
[6] Cautis, S.
[7] Cautis, S.; Licata, A.
[8] Cautis, S.; Licata, A., Heisenberg categorification and Hilbert schemes, Duke Math. J., 161, 13, 2469-2547, (2012) · Zbl 1263.14020
[9] Cautis, S.; Sussan, J., On a categorical Boson-Fermion correspondence communications, Math. Phys., 336, 2, 649-669, (2015) · Zbl 1327.17009
[10] Etingof, P.; Oblomkov, A., Quantization, orbifold cohomology, and Cherednik Algebras, Contemporary Mathematics, Volume 417, (2006), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1137.16014
[11] Frenkel, E.; Kac, V.; Radul, A.; Wang, W., W · Zbl 0838.17028
[12] Frenkel, E.; Reshetikhin, N., Quantum affine algebas and deformations of the Virasoro and W-algebras, Comm. Math. Phys., 178, 237-264, (1996) · Zbl 0869.17014
[13] Frenkel, I.; Wang, W., Virasoro algebra and wreath product convolution, J. Algebra, 242, 656-671, (2001) · Zbl 0981.17021
[14] Geissinger, L., Hopf algebras of symmetric functions and class functions, Combinatoire et representation du groupe symetrique, 168-181, (1977), Springer: Springer, Strasbourg
[15] Hong, J.; Yacobi, O., Polynomial representations and categorifications of Fock space II, Adv. Math., 237, 360-403, (2013) · Zbl 1266.17014
[16] Kac, V.; Wang, W.; Yan, C., Quasifinite representations of classical Lie subalgebras of W_1+, Adv. Math, 139, 56-140, (1998) · Zbl 0938.17018
[17] Khovanov, M., Heisenberg algebra and a graphical calculus, Fund. Math., 225, 169-210, (2014) · Zbl 1304.18019
[18] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups III, Quantum Topol., 1, 1, 1-92, (2010) · Zbl 1206.17015
[19] Morton, H.; Samuelson, P.
[20] Schiffmann, O.; Vasserot, E., Cherednik algebras, W-Algebras and the equivariant cohomology of the moduli space of instantons on A2, Publ. Math. Inst. Hautes Études Sci., 118, 213-342, (2013) · Zbl 1284.14008
[21] Shan, P.; Varagnolo, M.; Vasserot, E.
[22] Solleveld, M., Homology of graded algebras, J. Algebra, 323, 1622-1648, (2010) · Zbl 1194.20008
[23] Wang, W., Vertex algebras and the class algebras of wreath products, Proc. Lond. Math. Soc. (3), 88, 381-404, (2004) · Zbl 1052.17016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.