zbMATH — the first resource for mathematics

Towards a function field version of Freiman’s theorem. (English) Zbl 1439.11283
Summary: We discuss a multiplicative counterpart of Freiman’s \(3k-4\) theorem in the context of a function field \(F\) over an algebraically closed field \(K\). Such a theorem would give a precise description of subspaces \(S\), such that the space \(S^2\) spanned by products of elements of \(S\) satisfies \(\mathrm{dim} S^2\leq 3 \mathrm{dim} S-4\). We make a step in this direction by giving a complete characterisation of spaces \(S\) such that \(\mathrm{dim} S^2=2 \mathrm{dim} S\). We show that, up to multiplication by a constant field element, such a space \(S\) is included in a function field of genus \(0\) or \(1\). In particular if the genus is \(1\) then this space is a Riemann-Roch space.
11R58 Arithmetic theory of algebraic function fields
11P99 Additive number theory; partitions
05E40 Combinatorial aspects of commutative algebra
14H05 Algebraic functions and function fields in algebraic geometry
Full Text: DOI
[1] Bachoc, C.; Serra, C.; Zémor, G., An analogue of vosper’s theorem for extension fields, Math. Proc. Philos. Soc., 163, 423-452, (2017) · Zbl 1405.11134
[2] Bachoc, Christine; Serra, Oriol; Zémor, Gilles, Revisiting kneser’s theorem for field extensions, Combinatorica, (2017) · Zbl 1413.11115
[3] Beck, V.; Lecouvey, C., Additive combinatorics methods in associative algebras, (2015) · Zbl 06914192
[4] Bourbaki, N., Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, (1964), Hermann, Paris · Zbl 0205.34302
[5] Eliahou, S.; Lecouvey, C., On linear versions of some addition theorems, Linear Multilinear Algebra, 57, 759-775, (2009) · Zbl 1263.11015
[6] Freiman, G. A., Foundations of a structural theory of set addition, 37, vii+108 pp., (1973), Amer. Math. Soc., Providence, R. I. · Zbl 0271.10044
[7] Fulton, William, Algebraic curves, xxii+226 pp., (1989), Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA · Zbl 0681.14011
[8] Hamidoune, Y. O.; Rødseth., Ø., An inverse theorem modulo \(p\), Acta Arith., 92, 251-262, (2000) · Zbl 0945.11003
[9] Hou, X.; Leung, K. H.; Xiang, Q., A generalization of an addition theorem of Kneser, J. Number Theory, 97, 1-9, (2002) · Zbl 1034.11020
[10] Kneser, M., Summenmengen in lokalkompakten abelesche gruppen, Math. Z., 66, 88-110, (1956) · Zbl 0073.01702
[11] Mirandola, Diego; Zémor, Gilles, Critical pairs for the product singleton bound, IEEE Trans. Inform. Theory, 61, 9, 4928-4937, (2015) · Zbl 1359.94724
[12] Mumford, David, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Varieties defined by quadratic equations, 29-100, (1970), Edizioni Cremonese, Rome · Zbl 0198.25801
[13] Randriambololona, Hugues, Algorithmic arithmetic, geometry, and coding theory, 637, On products and powers of linear codes under componentwise multiplication, 3-78, (2015), Amer. Math. Soc., Providence, RI · Zbl 1397.94119
[14] Roth, R. M.; Raviv, N.; Tamo, I., Construction of sidon spaces with applications to coding, IEEE Trans. Inform. Theory, 64, 6, 4412-4422, (2018) · Zbl 1395.94237
[15] Silverman, Joseph H., The arithmetic of elliptic curves, 106, xx+513 pp., (2009), Springer, Dordrecht · Zbl 1194.11005
[16] Stichtenoth, Henning, Algebraic function fields and codes, 254, xiv+355 pp., (2009), Springer-Verlag, Berlin · Zbl 1155.14022
[17] Tao, Terence; Vu, Van, Additive combinatorics, 105, xviii+512 pp., (2006), Cambridge University Press, Cambridge · Zbl 1127.11002
[18] Vosper, G., The critical pairs of subsets of a group of prime order, J. London Math. Soc, 31, 200-205, (1956) · Zbl 0072.03402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.