Gess, Benjamin; Hofmanová, Martina Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE. (English) Zbl 1428.60090 Ann. Probab. 46, No. 5, 2495-2544 (2018). Summary: We study quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations with general multiplicative noise within the framework of kinetic solutions. Our results are twofold: First, we establish new regularity results based on averaging techniques. Second, we prove the existence and uniqueness of solutions in a full \(L^{1}\) setting requiring no growth assumptions on the nonlinearities. In addition, we prove a comparison result and an \(L^{1}\)-contraction property for the solutions, generalizing the results obtained in [A. Debussche et al., Ann. Probab. 44, No. 3, 1916–1955 (2016; Zbl 1346.60094)]. Cited in 31 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 35R60 PDEs with randomness, stochastic partial differential equations Keywords:quasilinear degenerate parabolic stochastic partial differential equation; kinetic formulation; kinetic solution; velocity averaging lemmas; renormalized solutions Citations:Zbl 1346.60094 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Ammar, K. and Wittbold, P. (2003). Existence of renormalized solutions of degenerate elliptic-parabolic problems. Proc. Roy. Soc. Edinburgh Sect. A133 477–496. · Zbl 1077.35103 [2] Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011). Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin. · Zbl 1227.35004 [3] Barbu, V., Da Prato, G. and Röckner, M. (2008). Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J.57 187–211. · Zbl 1137.76059 · doi:10.1512/iumj.2008.57.3284 [4] Bauzet, C., Vallet, G. and Wittbold, P. (2012). The Cauchy problem for conservation laws with a multiplicative stochastic perturbation. J. Hyperbolic Differ. Equ.9 661–709. · Zbl 1263.35222 [5] Bauzet, C., Vallet, G. and Wittbold, P. (2015). A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force. J. Hyperbolic Differ. Equ.12 501–533. · Zbl 1327.35209 · doi:10.1142/S0219891615500150 [6] Berthelin, F. and Vovelle, J. (2010). A Bhatnagar–Gross–Krook approximation to scalar conservation laws with discontinuous flux. Proc. Roy. Soc. Edinburgh Sect. A140 953–972. · Zbl 1207.35217 [7] Bouchut, F. and Desvillettes, L. (1999). Averaging lemmas without time Fourier transform and application to discretized kinetic equations. Proc. Roy. Soc. Edinburgh Sect. A129 19–36. · Zbl 0933.35159 · doi:10.1017/S030821050002744X [8] Carrillo, J. (1999). Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal.147 269–361. · Zbl 0935.35056 · doi:10.1007/s002050050152 [9] Carrillo, J. and Wittbold, P. (1999). Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations156 93–121. · Zbl 0932.35129 · doi:10.1006/jdeq.1998.3597 [10] Chen, C. Q., Ding, Q. and Karlsen, K. H. (2012). On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal.204 707–743. · Zbl 1261.60062 · doi:10.1007/s00205-011-0489-9 [11] Chen, G.-Q. and Perthame, B. (2003). Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire20 645–668. · Zbl 1031.35077 · doi:10.1016/S0294-1449(02)00014-8 [12] Crandall, M. G. (1972). The semigroup approach to first order quasilinear equations in several space variables. Israel J. Math.12 108–132. · Zbl 0246.35018 · doi:10.1007/BF02764657 [13] Crandall, M. G. and Liggett, T. M. (1971). Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math.93 265–298. · Zbl 0226.47038 · doi:10.2307/2373376 [14] Da Prato, G., Röckner, M., Rozovskii, B. L. and Wang, F.-Y. (2006). Strong solutions of stochastic generalized porous media equations: Existence, uniqueness, and ergodicity. Comm. Partial Differential Equations31 277–291. · Zbl 1158.60356 [15] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Encyclopedia Math. Appl.44. Cambridge Univ. Press, Cambridge. · Zbl 0761.60052 [16] Debussche, A., Hofmanová, M. and Vovelle, J. (2016). Degenerate parabolic stochastic partial differential equations: Quasilinear case. Ann. Probab.44 1916–1955. DOI:10.1214/15-AOP1013. · Zbl 1346.60094 [17] Debussche, A. and Vovelle, J. (2015). Invariant measure of scalar first-order conservation laws with stochastic forcing. Probab. Theory Related Fields163 575–611. · Zbl 1331.60117 · doi:10.1007/s00440-014-0599-z [18] Debussche, A. and Vovelle, J. Scalar conservation laws with stochastic forcing, revised version. Available at http://math.univ-lyon1.fr/vovelle/DebusscheVovelleRevised.pdf. · Zbl 1200.60050 · doi:10.1016/j.jfa.2010.02.016 [19] Debussche, A. and Vovelle, J. (2010). Scalar conservation laws with stochastic forcing. J. Funct. Anal.259 1014–1042. · Zbl 1200.60050 · doi:10.1016/j.jfa.2010.02.016 [20] Deya, A., Gubinelli, M., Hofmanová, M. and Tindel, S. General a priori estimates for rough PDEs with application to rough conservation laws. Available at arXiv:1604.00437. · Zbl 1255.60106 [21] DiPerna, R. J. and Lions, P. L. (1989). On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. of Math.130 321-366. · Zbl 0698.45010 · doi:10.2307/1971423 [22] DiPerna, R. J., Lions, P. L. and Meyer, Y. (1991). \(L^{p}\) regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire8 271–287. · Zbl 0763.35014 [23] Es-Sarhir, A. and von Renesse, M.-K. (2012). Ergodicity of stochastic curve shortening flow in the plane. SIAM J. Math. Anal.44 224–244. · Zbl 1251.47041 · doi:10.1137/100798235 [24] Feng, J. and Nualart, D. (2008). Stochastic scalar conservation laws. J. Funct. Anal.255 313–373. · Zbl 1154.60052 · doi:10.1016/j.jfa.2008.02.004 [25] Friz, P. K. and Gess, B. (2016). Stochastic scalar conservation laws driven by rough paths. Ann. Inst. H. Poincaré Anal. Non Linéaire33 933–963. · Zbl 1345.60055 [26] Gess, B. and Souganidis, P. E. (2016). Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws. Comm. Pure Appl. Math.70 1562–1597. · Zbl 1370.60105 · doi:10.1002/cpa.21646 [27] Gess, B. and Souganidis, P. E. (2017). Stochastic non-isotropic degenerate parabolic-hyperbolic equations. Stochastic Process. Appl.127 2961–3004. · Zbl 1372.60090 · doi:10.1016/j.spa.2017.01.005 [28] Gess, B. and Souganidis, P. E. (2015). Scalar conservation laws with multiple rough fluxes. Commun. Math. Sci.13 1569–1597. · Zbl 1329.60210 · doi:10.4310/CMS.2015.v13.n6.a10 [29] Gess, B. and Tölle, J. M. (2014). Multi-valued, singular stochastic evolution inclusions. J. Math. Pures Appl.9 789–827. · Zbl 1295.47042 · doi:10.1016/j.matpur.2013.10.004 [30] Gess, B. and Tölle, J. M. (2016). Ergodicity and local limits for stochastic local and nonlocal \(p\)-Laplace equations. SIAM J. Math. Anal.48 4094–4125. · Zbl 1364.60082 · doi:10.1137/15M1049774 [31] Grafakos, L. (2008). Classical Fourier Analysis, 2nd ed. Graduate Texts in Mathematics249. Springer, New York. · Zbl 1220.42001 [32] Hofmanová, M. (2013). Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl.123 4294–4336. · Zbl 1291.60130 [33] Hofmanová, M. (2015). A Bhatnagar–Gross–Krook approximation to stochastic scalar conservation laws. Ann. Inst. Henri Poincaré Probab. Stat.51 1500–1528. · Zbl 1329.60214 · doi:10.1214/14-AIHP610 [34] Hofmanová, M. (2016). Scalar conservation laws with rough flux and stochastic forcing. Stoch. Partial Differ. Equ., Anal. Computat.4 635–690. · Zbl 1351.60080 · doi:10.1007/s40072-016-0072-3 [35] Holden, H. and Risebro, N. H. (1997). Conservation laws with a random source. Appl. Math. Optim.36 229–241. · Zbl 0885.35069 · doi:10.1007/BF02683344 [36] Imbert, C. and Vovelle, J. (2004). A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications. SIAM J. Math. Anal.36 214–232. · Zbl 1085.35099 · doi:10.1137/S003614100342468X [37] Jabin, P. E. and Perthame, B. (2002). Regularity in kinetic formulations via averaging lemmas. ESAIM Control Optim. Calc. Var.8 761–774 (electronic). · Zbl 1065.35185 [38] Kim, J. U. (2003). On a stochastic scalar conservation law. Indiana Univ. Math. J.52 227–256. · Zbl 1037.60064 · doi:10.1512/iumj.2003.52.2310 [39] Komorowski, T., Peszat, S. and Szarek, T. (2010). On ergodicity of some Markov processes. Ann. Probab.38 1401–1443. · Zbl 1214.60035 · doi:10.1214/09-AOP513 [40] Kružkov, S. N. (1970). First order quasilinear equations with several independent variables. Mat. Sb.81 228–255. · Zbl 0202.11203 [41] Lions, P. L., Perthame, B. and Souganidis, P. E. (2013). Scalar conservation laws with rough (stochastic) fluxes. Stoch. Partial Differ. Equ., Anal. Computat.1 664–686. · Zbl 1333.60140 · doi:10.1007/s40072-013-0021-3 [42] Lions, P. L., Perthame, B. and Tadmor, E. (1991). Formulation cinétique des lois de conservation scalaires multidimensionnelles. C. R. Math. Acad. Sci. Paris 97–102. Série I. · Zbl 0729.49007 [43] Lions, P.-L., Perthame, B. and Tadmor, E. (1994). A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc.7 169–191. · Zbl 0820.35094 · doi:10.1090/S0894-0347-1994-1201239-3 [44] Lions, P.-L., Perthame, B. and Souganidis, P. E. (2014). Scalar conservation laws with rough (stochastic) fluxes: The spatially dependent case. Stoch. Partial Differ. Equ., Anal. Computat.2 517–538. · Zbl 1323.35233 · doi:10.1007/s40072-014-0038-2 [45] Perthame, B. (2002). Kinetic Formulation of Conservation Laws. Oxford Lecture Ser. Math. Appl.21. Oxford Univ. Press, Oxford. · Zbl 1030.35002 [46] Perthame, B. and Tadmor, E. (1991). A kinetic equation with kinetic entropy functions for scalar conservation laws. Comm. Math. Phys.136 501–517. · Zbl 0729.76070 · doi:10.1007/BF02099071 [47] Prévôt, C. and Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math.1905. Springer, Berlin. [48] Ren, J., Röckner, M. and Wang, F.-Y. (2007). Stochastic generalized porous media and fast diffusion equations. J. Differential Equations238 118–152. · Zbl 1129.60059 [49] Röckner, M. and Wang, F.-Y. (2008). Non-monotone stochastic generalized porous media equations. J. Differential Equations245 3898–3935. · Zbl 1151.76032 · doi:10.1016/j.jde.2008.03.003 [50] Saussereau, B. and Stoica, I. L. (2012). Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure. Stochastic Process. Appl.122 1456–1486. · Zbl 1278.35158 · doi:10.1016/j.spa.2012.01.005 [51] Tadmor, E. and Tao, T. (2007). Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs. Comm. Pure Appl. Math.60 1488–1521. · Zbl 1131.35004 · doi:10.1002/cpa.20180 [52] Triebel, H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library18. North-Holland, Amsterdam. · Zbl 0387.46033 [53] Vallet, G. and Wittbold, P. (2009). On a stochastic first-order hyperbolic equation in a bounded domain. Infin. Dimens. Anal. Quantum Probab. Relat. Top.12 613–651. · Zbl 1194.60042 · doi:10.1142/S0219025709003872 [54] Vázquez, J. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.