×

Pentavalent arc-transitive graphs of order \(2p^{2}q\). (English) Zbl 1401.05138

Summary: In this paper, we complete a classification of pentavalent arc-transitive graphs of order \(2p^{2}q\), where \(p\) and \(q\) are distinct odd primes. This result involves a subclass of pentavalent arc-transitive graphs of cube-free order.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures

Software:

Magma
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. · Zbl 0898.68039
[2] S. Ding, B. Ling, B. Lou and J. Pan, Arc-transitive pentavalent graphs of square-free order, Graphs Combin. 32 (2016), no. 6, 2355–2366. · Zbl 1383.05156
[3] J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics 163, Springer-Verlag, New York, 1996. · Zbl 0951.20001
[4] Y.-Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order \(10p\) or \(10p^2\), Sci. China Ser. A 49 (2006), no. 3, 300–319. · Zbl 1109.05051
[5] ——–, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), no. 4, 627–646. · Zbl 1118.05043
[6] Y.-Q. Feng, J.-X. Zhou and Y.-T. Li, Pentavalent symmetric graphs of order twice a prime power, Discrete Math. 339 (2016), no. 11, 2640–2651. · Zbl 1339.05178
[7] S.-T. Guo and Y.-Q. Feng, A note on pentavalent \(s\)-transitive graphs, Discrete Math. 312 (2012), no. 15, 2214–2216. · Zbl 1246.05105
[8] X.-H. Hua and Y.-Q. Feng, Pentavalent symmetric graphs of order \(8p\), J. Beijing Jiaotong University 35 (2011), 132–135.
[9] X.-H. Hua, Y.-Q. Feng and J. Lee, Pentavalent symmetric graphs of order \(2pq\), Discrete Math. 311 (2011), no. 20, 2259–2267. · Zbl 1246.05072
[10] Z. H. Huang, C. H. Li and J. M. Pan, Pentavalent symmetric graphs of order four times a prime power, Ars Combinatoria, accepted. · Zbl 1413.05161
[11] G. Karpilovsky, The Schur Multiplier, London Mathematical Society Monographs. New Series, 2, The Clarendon Press, Oxford University Press, New York, 1987. · Zbl 0619.20001
[12] C. H. Li, Z. P. Lu and G. X. Wang, Vertex-transitive cubic graphs of square-free order, J. Graph Theory 75 (2014), no. 1, 1–19. · Zbl 1280.05088
[13] ——–, The vertex-transitive and edge-transitive tetravalent graphs of square-free order, J. Algebraic Combin. 42 (2015), no. 1, 25–50. · Zbl 1327.05147
[14] B. Ling, C. X. Wu and B. G. Lou, Pentavalent symmetric graphs of order \(30p\), Bull. Aust. Math. Soc. 90 (2014), no. 3, 353–362. · Zbl 1308.05061
[15] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984), no. 1, 55–68. · Zbl 0535.05031
[16] J.-M. Oh, A classification of cubic \(s\)-regular graphs of order \(14p\), Discrete Math. 309 (2009), no. 9, 2721–2726. · Zbl 1208.05055
[17] J. Pan, Z. Liu and X. Yu, Pentavalent symmetric graphs of order twice a prime square, Algebra Colloq. 22 (2015), no. 3, 383–394. · Zbl 1321.05112
[18] J. Pan, B. Lou and C. Liu, Arc-transitive pentavalent graphs of order \(4pq\), Electron. J. Combin. 20 (2013), no. 1, Paper 36, 9 pp. · Zbl 1266.05061
[19] S. Qiao and C. H. Li, The finite groups of cube-free order, J. Algebra 334 (2011), 101–108. · Zbl 1234.20027
[20] C. X. Wu, Q. Y. Yang and J. Pan, Arc-transitive pentavalent graphs of order eighteen times a prime, Acta Mathematica Sinica, accepted.
[21] D.-W. Yang and Y.-Q. Feng, Pentavalent symmetric graphs of order \(2p^3\), Sci. China Math. 59 (2016), no. 9, 1851–1868. · Zbl 1350.05062
[22] J.-X. Zhou, Tetravalent \(s\)-transitive graphs of order \(4p\), Discrete Math. 309 (2009), no. 20, 6081–6086. · Zbl 1208.05058
[23] J.-X. Zhou and Y.-Q. Feng, On symmetric graphs of valency five, Discrete Math. 310 (2010), no. 12, 1725–1732. · Zbl 1225.05131
[24] ——–, Tetravalent \(s\)-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010), no. 2, 277–288. · Zbl 1214.05052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.