zbMATH — the first resource for mathematics

Characteristic classes of fiberwise branched surface bundles via arithmetic groups. (English) Zbl 1405.55016
Let \((S,\mathbf{z})\) be a closed oriented surface of genus \(g\geq 2\), \(\mathbf{z}\subset S\) a finite set of points and \(\mathrm{Mod}(S,\mathbf{z})\) be its pure mapping class group. This paper studies the following case: let \(G\) be a finite group of diffeomorphisms of \(S\) and \(\mathbf{z}\) be its fixed point set in \(S\). Moreover, let \(\mathrm{Mod}^{G}(S,\mathbf{z}) \subset \mathrm{Mod}(S,Z)\) denote the subgroup of mapping classes that may be realized by diffeomorphisms of \(S\) that commute with the action of \(G\). There is a representation \(\alpha: \mathrm{Mod}(S,\mathbf{z})\to Sp_{2g}(\mathbb{Z})\) that induces \(\alpha: \mathrm{Mod}^{G}(S,\mathbf{z})\to Sp^{G}_{2g}(\mathbb{Z})\), this last group is the centralizer of \(G\) in \(Sp_{2g}(\mathbb{Z})\). On the other hand, let \(\kappa_{1}\) be the first Miller-Morita-Mumford class in \(H^{2}(\mathrm{Mod}(S,\mathbf{z};\mathbb{Q}))\). For each \(z\in \mathbf{z}\) let \(e_{z}\) denote the Euler class, assume \(G=\langle t\rangle\) is a finite cyclic group with \(t\) a generator. Assume \(\mathbf{z}\) is the disjoint union of the fixed points \(\mathbf{z}_{i}\) of \(z\) and that \(t\) acts on the tangent space \(T_{z}S\) by the appropriate rotation. Let \(\epsilon_{j}=\sum_{z\in\mathbf{z}_{j}} e_{z}.\) The main theorem is as follows:
Theorem. Let \((S,\mathbf{z})\) be as above, \(G\) be a finite cyclic group of order \(m\) acting by orientation preserving diffeomorphisms on \(S\). Assume that the stabilizers of the action are either trivial or \(G\). If the genus of \(S/G\) is at least \(6\), then the image of \(\alpha^{*}: H^{2}(Sp^{2}_{2g}(\mathbb{Z};\mathbb{Q}))\to H^{2}(\mathrm{Mod}^{G}(S,\mathbf{z};\mathbb{Q}))\) is the subspace generated by \(\kappa_{1}\) and \(\epsilon_{j}+\epsilon_{m-j}\) for \(1\leq j <\frac{m}{2}.\) The author has several applications in \(G\)-cobordism, surface group representations and Hirzebruch’s index formula for branched covers.

55R40 Homology of classifying spaces and characteristic classes in algebraic topology
20J06 Cohomology of groups
57M99 General low-dimensional topology
58J20 Index theory and related fixed-point theorems on manifolds
Full Text: DOI Euclid
[1] [Ati69] M. F. Atiyah, The signature of fibre-bundles, Global Analysis (Papers in Honor of K. Kodaira), pp. 73–84, Univ. Tokyo Press, Tokyo, 1969.
[2] [AS68a] M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 531–545. · Zbl 0164.24201
[3] [AS68b] M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530. · Zbl 0164.24001
[4] [AS68c] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604.
[5] [AS71] M. F. Atiyah and I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119–138.
[6] [BSBH+17] G. Ben-Simon, M. Burger, T. Hartnick, A. Iozzi, and A. Wienhard, On weakly maximal representations of surface groups, J. Differential Geom. 105 (2017), no. 3, 375–404. · Zbl 1373.30047
[7] [BH72] J. Birman and H. Hilden, Isotopies of homeomorphisms of Riemann surfaces and a theorem about Artin’s braid group, Bull. Amer. Math. Soc. 78 (1972), 1002–1004. · Zbl 0255.57002
[8] [Bor74] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér. (4) 7 (1975), 235–272, 1974. · Zbl 0316.57026
[9] [Bor81] A. Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., 14, pp. 21–55, Birkhäuser, Boston, Mass., 1981.
[10] [BH58] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. · Zbl 0097.36401
[11] [BGPG03] S. B. Bradlow, O. García-Prada, and P. B. Gothen, Surface group representations and \(\text{U}(p,q)\)-Higgs bundles, J. Differential Geom. 64 (2003), no. 1, 111–170. · Zbl 1070.53054
[12] [CCG13] T. Church, M. Crossley, and J. Giansiracusa, Invariance properties of Miller–Morita–Mumford characteristic numbers of fibre bundles, Q. J. Math. 64 (2013), no. 3, 729–746. · Zbl 1302.57062
[13] [CFT12] T. Church, B. Farb, and M. Thibault, On the geometric nature of characteristic classes of surface bundles, J. Topol. 5 (2012), no. 3, 575–592. · Zbl 1260.57047
[14] [CF64] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergeb. Math. Grenzgeb. (3), 33, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964. · Zbl 0125.40103
[15] [Dav79] P. Davis, Circulant matrices, Pure Appl. Math., John Wiley & Sons, New York–Chichester–Brisbane, 1979.
[16] [DT87] A. Domic and D. Toledo, The Gromov norm of the Kaehler class of symmetric domains, Math. Ann. 276 (1987), no. 3, 425–432. · Zbl 0595.53061
[17] [ES70] C. J. Earle and A. Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geom. 4 (1970), 169–185. · Zbl 0194.52802
[18] [ERW15] J. Ebert and O. Randal-Williams, Torelli spaces of high-dimensional manifolds, J. Topol. 8 (2015), no. 1, 38–64. · Zbl 1387.55020
[19] [FM12] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Math. Ser., 49, Princeton University Press, Princeton, NJ, 2012. · Zbl 1245.57002
[20] [Gia09] J. Giansiracusa, The diffeomorphism group of a \(K3\) surface and Nielsen realization, J. Lond. Math. Soc. (2) 79 (2009), no. 3, 701–718. · Zbl 1171.57033
[21] [GLLM15] F. Grunewald, M. Larsen, A. Lubotzky, and J. Malestein, Arithmetic quotients of the mapping class group, 2015, http://arxiv.org/abs/1307.2593. · Zbl 1334.57017
[22] [Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[23] [Hir69] F. Hirzebruch, The signature of ramified coverings, Global Analysis (Papers in Honor of K. Kodaira), pp. 253–265, Univ. Tokyo Press, Tokyo, 1969.
[24] [Kot98] D. Kotschick, Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998), no. 1–2, 227–234. · Zbl 0905.57010
[25] [LM89] H. B. Jr. Lawson and M. Michelsohn, Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989.
[26] [Loo97] E. Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64 (1997), no. 1, 69–83. · Zbl 0872.57018
[27] [MH75] C. Maclachlan and W. J. Harvey, On mapping-class groups and Teichmüller spaces, Proc. Lond. Math. Soc. (3) 30 (1975), part 4, 496–512. · Zbl 0303.32020
[28] [Mar91] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), 17, Springer-Verlag, Berlin, 1991.
[29] [Mat62] Y. Matsushima, On Betti numbers of compact, locally sysmmetric Riemannian manifolds, Osaka J. Math. 14 (1962), 1–20. · Zbl 0118.38401
[30] [McM13] C. T. McMullen, Braid groups and Hodge theory, Math. Ann. 355 (2013), no. 3, 893–946. · Zbl 1290.30050
[31] [MP78] W. H. III Meeks and J. Patrusky, Representing homology classes by embedded circles on a compact surface, Illinois J. Math. 22 (1978), no. 2, 262–269. · Zbl 0392.57016
[32] [Mor87] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), no. 3, 551–577. · Zbl 0608.57020
[33] [Mor01] S. Morita, Geometry of characteristic classes, Transl. Math. Monogr., 199, American Mathematical Society, Providence, RI, 2001, Translated from the 1999 Japanese original, Iwanami Series in Modern Mathematics.
[34] [Mor15] D. W. Morris, Introduction to arithmetic groups. Deductive Press, Place of publication not identified, 2015.
[35] [PR94] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., 139, Academic Press, Inc., Boston, MA, 1994, Translated from the 1991 Russian original by Rachel Rowen. · Zbl 0841.20046
[36] [Put12] A. Putman, The Picard group of the moduli space of curves with level structures, Duke Math. J. 161 (2012), no. 4, 623–674. · Zbl 1241.30015
[37] [Seg68] G. Segal, Equivariant \(K\)-theory, Publ. Math. Inst. Hautes Études Sci. 34 (1968), 129–151. · Zbl 0199.26202
[38] [Sha78] P. Shanahan, The Atiyah–Singer index theorem, Lecture Notes in Math., 638, Springer, Berlin, 1978. · Zbl 0369.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.