Hsiao, Jen-Chieh; Matusevich, Laura Felicia Bernstein – Sato polynomials on normal toric varieties. (English) Zbl 1402.14026 Mich. Math. J. 67, No. 1, 117-132 (2018). Normally, multiplier ideals and \(b\)-functions are related to some divisor (or ideals) in a smooth ambient space. This paper generalizes \(b\)-functions to the case of the ideals on normal toric varieties, and showed that this \(b\)-function is the same as the usual \(b\)-function of some ideal on a smooth variety (i.e. locally an ideal in the polynomial ring of some affine space). Moreover, since multiplier ideals have been generalized to the case of ideals on normal varieties [T. de Fernex and C. D. Hacon, Compos. Math. 145, No. 2, 393–414 (2009; Zbl 1179.14003)], the authors can get a generalization of the classical result about the roots of \(b\)-function and the log-canonical threshold [N. Budur et al., Compos. Math. 142, No. 3, 779–797 (2006; Zbl 1112.32014)], which in the simplest case, for any divisor \((f=0)\) in \(\mathbb{A}^n\), the jumping number, the log canonical threshold \(\alpha_f\) is the smallest root of \(b_f(-s)\), and any jumping number in \([\alpha_f, \alpha_f+1)\) are roots of \(b_f(-s)\). Reviewer: Mingyi Zhang (Chicago) Cited in 4 Documents MSC: 14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials 14M25 Toric varieties, Newton polyhedra, Okounkov bodies 14F18 Multiplier ideals 14B05 Singularities in algebraic geometry Keywords:Bernstein-Sato polynomial; b-function; toric varieties; multiplier ideal; normal varieties Citations:Zbl 1179.14003; Zbl 1112.32014 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] [ÀHN16] J. Àlvarez Montaner, C. Huneke, and L. Núñez-Betancourt, \(D\)-modules, Bernstein–Sato polynomials and \(F\)-invariants of direct summands, preprint, 2016, arXiv:1611.04412. [2] [BL10] C. Berkesch and A. Leykin, Algorithms for Bernstein–Sato polynomials and multiplier ideals, ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 99–106, ACM, New York, 2010. · Zbl 1321.68522 [3] [Ber72] I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funktsional. Anal. i Prilozhen. 6 (1972), no. 4, 26–40. [4] [BGG72] I. N. Bernšteĭn, I. M. Gel\('\)fand, and S. I. Gel\('\)fand, Differential operators on a cubic cone, Uspekhi Mat. Nauk 27 (1972), no. 1(163), 185–190. · Zbl 0253.58009 [5] [Bli04] M. Blickle, Multiplier ideals and modules on toric varieties, Math. Z. 248 (2004), no. 1, 113–121. · Zbl 1061.14055 · doi:10.1007/s00209-004-0655-y [6] [BMS06a] N. Budur, M. Mustaţǎ, and M. Saito, Bernstein–Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), no. 3, 779–797. · Zbl 1112.32014 [7] [BMS06b] N. Budur, M. Mustaţǎ, and M. Saito, Combinatorial description of the roots of the Bernstein–Sato polynomials for monomial ideals, Comm. Algebra 34 (2006), no. 11, 4103–4117. · Zbl 1115.32018 · doi:10.1080/00927870600876201 [8] [dFH09] T. de Fernex and C. D. Hacon, Singularities on normal varieties, Compos. Math. 145 (2009), no. 2, 393–414. · Zbl 1179.14003 · doi:10.1112/S0010437X09003996 [9] [ELSV04] L. Ein, R. Lazarsfeld, K. E. Smith, and D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469–506. · Zbl 1061.14003 · doi:10.1215/S0012-7094-04-12333-4 [10] [Gro67] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 361. · Zbl 0153.22301 [11] [How01] J. A. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2665–2671 (electronic). · Zbl 0979.13026 · doi:10.1090/S0002-9947-01-02720-9 [12] [Igu00] J. Igusa, An introduction to the theory of local zeta functions, AMS/IP Stud. Adv. Math., 14, Amer. Math. Soc., Providence, RI; International Press, Cambridge, MA, 2000. · Zbl 0959.11047 [13] [Jon94] A. G. Jones, Rings of differential operators on toric varieties, Proc. Edinb. Math. Soc. (2) 37 (1994), no. 1, 143–160. · Zbl 0805.16024 · doi:10.1017/S0013091500018770 [14] [Kas83] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry, Tokyo/Kyoto, 1982, Lecture Notes in Math., 1016, pp. 134–142, Springer, Berlin, 1983. · Zbl 0566.32022 [15] [Kol97] J. Kollár, Singularities of pairs, Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., 62, pp. 221–287, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0905.14002 [16] [Laz04] R. Lazarsfeld, Positivity for vector bundles, and multiplier ideals, Positivity in algebraic geometry. II, Ergeb. Math. Grenzgeb. (3). A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 49, Springer, Berlin, 2004. · Zbl 1093.14500 [17] [Lic89] B. Lichtin, Poles of \(\vert f(z,w)\vert^{2s}\) and roots of the \(b\)-function, Ark. Mat. 27 (1989), no. 2, 283–304. · Zbl 0719.32016 [18] [Mal83] B. Malgrange, Polynômes de Bernstein–Sato et cohomologie évanescente, analysis and topology on singular spaces, II, III, Astérisque, 101, pp. 243–267, Soc. Math. France, Paris, 1983. · Zbl 0528.32007 [19] [Mus87] I. M. Musson, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc. 303 (1987), no. 2, 805–827. · Zbl 0628.13019 · doi:10.1090/S0002-9947-1987-0902799-2 [20] [ST01] M. Saito and W. N. Traves, Differential algebras on semigroup algebras, Symbolic Computation: Solving Equations In Algebra, Geometry, And Engineering (South Hadley, MA, 2000), Contemp. Math., 286, pp. 207–226, Amer. Math. Soc., Providence, RI, 2001. · Zbl 1058.16026 [21] [SS72] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Proc. Natl. Acad. Sci. USA 69 (1972), 1081–1082. · Zbl 0249.10034 · doi:10.1073/pnas.69.5.1081 [22] [Yan83] T. Yano, \(b\)-functions and exponents of hypersurface isolated singularities, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., 40, pp. 641–652, Amer. Math. Soc., Providence, RI, 1983. · Zbl 0547.32004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.