×

Adaptive invariant density estimation for ergodic diffusions over anisotropic classes. (English) Zbl 1454.62249

Summary: Consider some multivariate diffusion process \(\mathbf{X}=(X_{t})_{t\geq0}\) with unique invariant probability measure and associated invariant density \(\rho\), and assume that a continuous record of observations \(X^{T}=(X_{t})_{0\leq t \leq T}\) of \(\mathbf{X}\) is available. Recent results on functional inequalities for symmetric Markov semigroups are used in the statistical analysis of kernel estimators \(\widehat{\rho}_{T}=\widehat{\rho}_{T}(X^{T})\) of \(\rho\). For the basic problem of estimation with respect to sup-norm risk under anisotropic Hölder smoothness constraints, the proposed approach yields an adaptive estimator which converges at a substantially faster rate than in standard multivariate density estimation from i.i.d. observations.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference

References:

[1] Bakry, D., Bolley, F. and Gentil, I. (2011). Around Nash inequalities. In Journées Équations aux Dérivées Partielles (2010), Biarritz, France. · Zbl 1252.35015
[2] Bakry, D., Cattiaux, P. and Guillin, A. (2008). Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal.254 727–759. · Zbl 1146.60058 · doi:10.1016/j.jfa.2007.11.002
[3] Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften348. Springer, Cham. · Zbl 1376.60002
[4] Carlen, E. A., Kusuoka, S. and Stroock, D. W. (1987). Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré Probab. Stat.23 245–287. · Zbl 0634.60066
[5] Cattiaux, P. and Guillin, A. (2008). Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Stat.12 12–29. · Zbl 1183.60011 · doi:10.1051/ps:2007032
[6] Chorowski, J. and Trabs, M. (2016). Spectral estimation for diffusions with random sampling times. Stochastic Process. Appl.126 2976–3008. · Zbl 1345.62117 · doi:10.1016/j.spa.2016.03.009
[7] Dalalyan, A. and Reiß, M. (2007). Asymptotic statistical equivalence for ergodic diffusions: The multidimensional case. Probab. Theory Related Fields137 25–47. · Zbl 1105.62004 · doi:10.1007/s00440-006-0502-7
[8] Davies, E. B. (1990). Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics92. Cambridge Univ. Press, Cambridge.
[9] Gobet, E., Hoffmann, M. and Reiß, M. (2004). Nonparametric estimation of scalar diffusions based on low frequency data. Ann. Statist.32 2223–2253. · Zbl 1056.62091 · doi:10.1214/009053604000000797
[10] Goldenshluger, A. and Lepski, O. (2008). Universal pointwise selection rule in multivariate function estimation. Bernoulli14 1150–1190. · Zbl 1168.62323 · doi:10.3150/08-BEJ144
[11] Goldenshluger, A. and Lepski, O. (2009). Structural adaptation via \(\mathbb{L}_{p}\)-norm inequalities. Probab. Theory Related Fields143 41–71. · Zbl 1149.62020 · doi:10.1007/s00440-007-0119-5
[12] Goldenshluger, A. and Lepski, O. (2011). Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. Ann. Statist.39 1608–1632. · Zbl 1234.62035 · doi:10.1214/11-AOS883
[13] Kutoyants, Y. A. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer, New York. · Zbl 1038.62073
[14] Ledoux, M. (2001). Logarithmic Sobolev inequalities for unbounded spin systems revisited. In Séminaire de Probabilités XXXV. Lecture Notes in Math.1755 167–194. Springer, Berlin. · Zbl 0979.60096
[15] Lepski, O. (2013). Multivariate density estimation under sup-norm loss: Oracle approach, adaptation and independence structure. Ann. Statist.41 1005–1034. · Zbl 1360.62158 · doi:10.1214/13-AOS1109
[16] Lepski, O. (2013). Upper functions for positive random functionals. I. General setting and Gaussian random functions. Math. Methods Statist.22 1–27. · Zbl 1279.60033 · doi:10.3103/S1066530713010018
[17] Lepski, O. (2013). Upper functions for positive random functionals. II. Application to the empirical processes theory, Part 1. Math. Methods Statist.22 83–99. · Zbl 1278.60039 · doi:10.3103/S1066530713020014
[18] Lepski, O. (2013). Upper functions for positive random functionals. II. Application to the empirical processes theory, Part 2. Math. Methods Statist.22 193–212. · Zbl 1281.60022 · doi:10.3103/S1066530713030022
[19] Lepski, O. V. and Levit, B. Y. (1999). Adaptive nonparametric estimation of smooth multivariate functions. Math. Methods Statist.8 344–370. · Zbl 1104.62312
[20] Lezaud, P. (2001). Chernoff and Berry–Esséen inequalities for Markov processes. ESAIM Probab. Stat.5 183–201. · Zbl 0998.60075 · doi:10.1051/ps:2001108
[21] Nash, J. (1958). Continuity of solutions of parabolic and elliptic equations. Amer. J. Math.80 931–954. · Zbl 0096.06902 · doi:10.2307/2372841
[22] Nelson, E. (1958). The adjoint Markoff process. Duke Math. J.25 671–690. · Zbl 0084.13402 · doi:10.1215/S0012-7094-58-02561-4
[23] Nikolskii, S. M. (1975). Approximation of Functions of Several Variables and Imbedding Theorems. Die Grundlehren der Mathematischen Wissenschaften205. Springer, New York. Translated from the Russian by J. M. Danskin, Jr. · Zbl 0307.46024
[24] Paulin, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods. Electron. J. Probab.20 1–32. · Zbl 1342.60121 · doi:10.1214/EJP.v20-4039
[25] Söhl, J. and Trabs, M. (2016). Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM Probab. Stat.20 432–462. · Zbl 1357.62198 · doi:10.1051/ps/2016017
[26] Strauch, C. (2018). Supplement to “Adaptive invariant density estimation for ergodic diffusions over anisotropic classes.” DOI:10.1214/17-AOS1664SUPP.
[27] Van der Vaart, A. W. and van Zanten, H. (2005). Donsker theorems for diffusions: Necessary and sufficient conditions. Ann. Probab.33 1422–1451. · Zbl 1084.60047 · doi:10.1214/009117905000000152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.