×

Sieve bootstrap for functional time series. (English) Zbl 1420.62392

Author’s abstract: “A bootstrap procedure for functional time series is proposed which exploits a general vector autoregressive representation of the time series of Fourier coefficients appearing in the Karhunen-Loève expansion of the functional process. A double sieve-type bootstrap method is developed, which avoids the estimation of process operators and generates functional pseudo-time series that appropriately mimics the dependence structure of the functional time series at hand. The method uses a finite set of functional principal components to capture the essential driving parts of the infinite dimensional process and a finite order vector autoregressive process to imitate the temporal dependence structure of the corresponding vector time series of Fourier coefficients. By allowing the number of functional principal components as well as the autoregressive order used to increase to infinity (at some appropriate rate) as the sample size increases, consistency of the functional sieve bootstrap can be established. We demonstrate this by proving a basic bootstrap central limit theorem for functional finite Fourier transforms and by establishing bootstrap validity in the context of a fully functional [reviewer’s note: two-sample] testing problem. A novel procedure to select the number of functional principal components is introduced while simulations illustrate the good finite sample performance of the new bootstrap method proposed.”

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G09 Nonparametric statistical resampling methods
62M15 Inference from stochastic processes and spectral analysis

Software:

freqdom.fda

References:

[1] Aneiros-Pérez, G., Cao, R. and Vilar-Fernández, J. M. (2011). Functional methods for time series prediction: A nonparametric approach. J. Forecast.30 377–392. · Zbl 1217.91138 · doi:10.1002/for.1169
[2] Aue, A., Norinho, D. D. and Hörmann, S. (2015). On the prediction of stationary functional time series. J. Amer. Statist. Assoc.110 378–392. · Zbl 1373.62462 · doi:10.1080/01621459.2014.909317
[3] Bosq, D. (2000). Linear Process in Function Spaces. Springer, Berlin. · Zbl 0962.60004
[4] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York. · Zbl 0709.62080
[5] Cerovecki, C. and Hörmann, S. (2017). On the CLT for discrete Fourier transforms of functional time series. J. Multivariate Anal.154 282–295. · Zbl 1397.62298 · doi:10.1016/j.jmva.2016.11.006
[6] Cheng, R. and Pourahmadi, M. (1993). Baxter’s inequality and convergence of finite predictors of multivariate stochastic processes. Probab. Theory Related Fields95 115–124. · Zbl 0792.60031 · doi:10.1007/BF01197341
[7] Dehling, H., Sharipov, O. S. and Wendler, M. (2015). Bootstrap for dependent Hilbert space valued random variables with application to von Mises statistics. J. Multivariate Anal.133 200–215. · Zbl 1302.62098 · doi:10.1016/j.jmva.2014.09.011
[8] Fernández De Castro, B., Guillas, S. and González Manteiga, W. (2005). Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics47 212–222.
[9] Hörmann, S. and Kidziński, L. (2015). A note on estimation in Hilbertian linear models. Scand. J. Stat.42 43–62. · Zbl 1364.62175
[10] Hörmann, S., Kidziński, L. and Hallin, M. (2015). Dynamic functional principal components. J. Roy. Statist. Soc. Ser. B77 319–348. · Zbl 1414.62133
[11] Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. Ann. Statist.38 1845–1884. · Zbl 1189.62141 · doi:10.1214/09-AOS768
[12] Hörmann, S. and Kokoszka, P. (2012). Functional time series. In Time Series Analysis-Methods and Applications 157–186.
[13] Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer, New York. · Zbl 1279.62017
[14] Horváth, L., Kokoszka, P. and Reeder, R. (2013). Estimation of the mean of functional time series and a two sample problem. J. Roy. Statist. Soc. Ser. B75 103–122. · Zbl 07555440
[15] Horváth, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series. J. Econometrics179 66–82. · Zbl 1293.62186 · doi:10.1016/j.jeconom.2013.11.002
[16] Hurvich, C. M. and Tsai, C.-L. (1993). A corrected Akaike information criterion for vector autoregressive model selection. J. Time Series Anal.14 271–279. · Zbl 0768.62076 · doi:10.1111/j.1467-9892.1993.tb00144.x
[17] Hyndman, R. J. and Shang, H. L. (2009). Forecasting functional time series. J. Korean Statist. Soc.38 199–211. · Zbl 1293.62267 · doi:10.1016/j.jkss.2009.06.002
[18] Kreiss, J.-P. and Paparoditis, E. (2011). Bootstrap methods for dependent data: A review. J. Korean Statist. Soc.40 357–378. · Zbl 1296.62172 · doi:10.1016/j.jkss.2011.08.009
[19] Kreiss, J.-P., Paparoditis, E. and Politis, D. N. (2011). On the range of validity of the autoregressive sieve bootstrap. Ann. Statist.39 2103–2130. · Zbl 1227.62067 · doi:10.1214/11-AOS900
[20] Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, Berlin. · Zbl 1028.62002
[21] Li, Y., Wang, N. and Carorol, R. J. (2013). Selecting the number of principal components in functional data. J. Amer. Statist. Assoc.108 1284–1294. · Zbl 1288.62102 · doi:10.1080/01621459.2013.788980
[22] McMurry, T. and Politis, D. N. (2011). Resampling methods for functional data. In The Oxford Handbook of Functional Data Analysis (F. Ferraty and Y. Romain, eds.) 189–209. Oxford Univ. Press, London.
[23] Merlevède, F., Peligrad, M. and Utev, S. (1997). Sharp conditions for the CLT of linear processes in a Hilbert space. J. Theoret. Probab.10 681–693. · Zbl 0885.60015 · doi:10.1023/A:1022653728014
[24] Meyer, M., Jentsch, C. and Kreiss, J.-P. (2017). Baxter’s inequality and sieve bootstrap for random fields. Bernoulli23 2988–3020. · Zbl 1412.62127 · doi:10.3150/16-BEJ835
[25] Meyer, M. and Kreiss, J.-P. (2015). On the vector autoregressive sieve bootstrap. J. Time Series Anal.36 377–397. · Zbl 1325.62067 · doi:10.1111/jtsa.12090
[26] Panaretos, V. and Tavakoli, S. (2013). Fourier analysis of stationary time series in function spaces. Ann. Statist.41 568–603. · Zbl 1267.62094 · doi:10.1214/13-AOS1086
[27] Paparoditis, E. (2018). Supplement to “Sieve bootstrap for functional time series.” DOI:10.1214/17-AOS1667SUPP.
[28] Politis, D. N. and Romano, J. (1994). Limit theorems for weakly dependent Hilbert space valued random variables with applications to the stationary bootstrap. Statist. Sinica4 461–476. · Zbl 0824.60006
[29] Pourahmadi, M. (2001). Foundation of Time Series Analysis and Prediction Theory. Wiley, New York. · Zbl 0982.62074
[30] Sharipov, O., Tewes, J. and Wendler, M. (2016). Sequential block bootstrap in a Hilbert space with application to change point analysis. Canad. J. Statist.44 300-322. · Zbl 1357.62187 · doi:10.1002/cjs.11293
[31] Wiener, N. and Masani, P. (1958). The prediction theory of multivariate stochastic processes, II. Acta Math.99 93–137.
[32] Yao, F., Müller, H. G. and Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc.100 577–590. · Zbl 1117.62451 · doi:10.1198/016214504000001745
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.