×

zbMATH — the first resource for mathematics

Parallel mesh partitioning based on space filling curves. (English) Zbl 1410.65470
Summary: Larger supercomputers allow the simulation of more complex phenomena with increased accuracy. Eventually, this requires finer and thus, also larger geometric discretizations. In this context, and extrapolating to the Exascale paradigm, meshing operations such as generation, deformation, adaptation/regeneration or partition/load balance become a critical issue within the simulation workflow. In this paper, we focus on mesh partitioning. In particular, we present a fast and scalable geometric partitioner based on space filling curves (SFC) as an alternative to the standard graph partitioning approach. We avoid any computing or memory bottleneck in the algorithm, while we impose that the solution achieved is independent (discounting rounding off errors) of the number of parallel processes used to compute it. The performance of the SFC-based partitioner is demonstrated using up to 4096 CPU-cores in the Blue Waters supercomputer.
MSC:
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
Software:
Alya; PT-Scotch; Zoltan
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Karypis, G.; Vipin, K., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J Sci Comput, 20, 1, 359-392, (1998) · Zbl 0915.68129
[2] Chevalier, C.; François, P., Pt-scotch: a tool for efficient parallel graph ordering, CoRR, (2009)
[3] Devine, K.; Boman, E.; Heaphy, R.; Hendrickson, B.; Courtenay, V., Zoltan data management services for parallel dynamic applications, Comput Sci Eng, 4, 2, 90-97, (2002)
[4] Karypis, G.; Vipin, K., A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, J Parallel Distrib Comput, 48, January 1, 71-95, (1998)
[5] Zhi, S., Performance analysis of large scale parallel CFD computing based on code_saturne, Comput Phys Commun, 184, 2, 381-386, (2013)
[6] Peano, G., Sur une courbe, qui remplit toute une aire plane, 71-75, (1990), Springer Vienna
[7] David, H., Über die stetige abbildung einer linie auf ein flächenstück, pages 1-2, (1970), Springer Berlin, Heidelberg
[8] Sagan, H., Space-filling curves, (1994), Springer New York, NY · Zbl 0806.01019
[9] Luitjens, J.; Berzins, M.; Henderson., T., Parallel space-filling curve generation through sorting, Concurr Comput Pract Exper, 19, 10, 1387-1402, (2007)
[10] Calmet, H.; Gambaruto, A. M.; Bates, A. J.; Vázquez, M.; Houzeaux, G.; Doorly, D. J., Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation, Comput Biol Med, 69, 166-180, (2016)
[11] Calmet, H.; Kleinstreuer, C.; Houzeaux, G.; Kolanjiyil, A. V.; Lehmkuhl, O.; Olivares, E.; Vázquez, M., Subject-variability effects on micron particle deposition in human nasal cavities, J Aerosol Sci, 115, 12-28, (2018)
[12] Gövert, S.; Mira, D.; Kok, J. B.W.; Vázquez, M.; Houzeaux, G., The effect of partial premixing and heat loss on the reacting flow field prediction of a swirl stabilized gas turbine model combustor, Flow Turbul Combust, (2017)
[13] Houzeaux, G.; Vázquez, M.; Aubry, R.; Cela, J. M., A massively parallel fractional step solver for incompressible flows, J Comput Phys, 228, 17, 6316-6332, (2009) · Zbl 1261.76030
[14] Houzeaux, G.; Aubry, R.; Vázquez, M., Extension of fractional step techniques for incompressible flows: the preconditioned orthomin(1) for the pressure Schur complement, Comput Fluids, 44, 1, 297-313, (2011) · Zbl 1271.76208
[15] Vázquez, M.; Houzeaux, G.; Koric, S.; Artigues, A.; Aguado-Sierra, J.; Arís, R.; Mira, D.; Calmet, H.; Cucchietti, F.; Owen, H.; Taha, A.; Burness, E. D.; Cela, J. M.; Valero, M., Alya: multiphysics engineering simulation towards exascale, J Comput Sci, 14, 15-27, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.