×

zbMATH — the first resource for mathematics

A front tracking method for particle-resolved simulation of evaporation and combustion of a fuel droplet. (English) Zbl 1410.76292
Summary: A front-tracking method is developed for the particle-resolved simulations of droplet evaporation and combustion in a liquid-gas multiphase system. One field formulation of the governing equations is solved in the whole computational domain by incorporating suitable jump conditions at the interface. Both phases are assumed to be incompressible but the divergence-free velocity condition is modified to account for the phase change at the interface. A temperature gradient based evaporation model is used. An operator-splitting approach is employed to advance temperature and species mass fractions in time. The CHEMKIN package is incorporated into the solver to handle the chemical kinetics. The multiphase flow solver and the evaporation model are first validated using the benchmark problems. The method is then applied to study combustion of a n-heptane droplet using a single-step chemistry model and a reduced chemical kinetics mechanism involving 25-species and 26-reactions. The results are found to be in good agreement with the experimental data and the previous numerical simulations for the time history of the normalized droplet size, the gasification rate, the peak temperature and the ignition delay times. The initial flame diameter and the profile of the flame standoff ratio are also found to be compatible with the results in the literature. The method is finally applied to simulate a burning droplet moving due to gravity at various ambient temperatures and interesting results are observed about the flame blow-off.
Reviewer: Reviewer (Berlin)
MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
76V05 Reaction effects in flows
80A25 Combustion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Irfan, M.; Muradoglu, M., A front tracking method for direct numerical simulation of evaporation process in a multiphase system, J Comput Phys, 337, 132-153, (2017)
[2] Harlow, F. H.; Welch, J. E., Numerical calculation of time?dependent viscous incompressible flow of fluid with free surface, Phys Fluids, 8, 12, 2182-2189, (1965) · Zbl 1180.76043
[3] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 1, 201-225, (1981) · Zbl 0462.76020
[4] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 1, 12-49, (1988) · Zbl 0659.65132
[5] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 1, 146-159, (1994) · Zbl 0808.76077
[6] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modeling, J Comput Phys, 155, 1, 96-127, (1999) · Zbl 0966.76060
[7] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu Rev Fluid Mech, 30, 1, 139-165, (1998) · Zbl 1398.76051
[8] Swift, M. R.; Orlandini, E.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys Rev E, 54, 5041-5052, (1996)
[9] Ryskin, G.; Leal, L. G., Numerical solution of free-boundary problems in fluid mechanics. part 1. the finite-difference technique, J Fluid Mech, 148, 1-17, (1984) · Zbl 0548.76031
[10] Glimm, J., Nonlinear and stochastic phenomena: the grand challenge for partial differential equations, SIAM Rev, 33, 4, 626-643, (1991) · Zbl 0756.35070
[11] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 1, 25-37, (1992) · Zbl 0758.76047
[12] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 2, 708-759, (2001) · Zbl 1047.76574
[13] Juric, D.; Tryggvason, G., Computations of boiling flows, Int J Multiph Flow, 24, 3, 387-410, (1998) · Zbl 1121.76455
[14] Esmaeeli, A.; Tryggvason, G., Computations of film boiling. part i: numerical method, Int J Heat Mass Transf, 47, 25, 5451-5461, (2004) · Zbl 1121.76489
[15] Esmaeeli, A.; Tryggvason, G., Computations of explosive boiling in microgravity, J Sci Comput, 19, 1, 163-182, (2003) · Zbl 1081.76573
[16] Esmaeeli, A.; Tryggvason, G., A front tracking method for computations of boiling in complex geometries, Int J Multiph Flow, 30, 7, 1037-1050, (2004) · Zbl 1201.76275
[17] Esmaeeli, A.; Tryggvason, G., Computations of film boiling. part ii: multi-mode film boiling, Int J Heat Mass Transf, 47, 25, 5463-5476, (2004) · Zbl 1121.76490
[18] Al-Rawahi, N.; Tryggvason, G., Numerical simulation of dendritic solidification with convection: two-dimensional geometry, J Comput Phys, 180, 2, 471-496, (2002) · Zbl 1143.76529
[19] Al-Rawahi, N.; Tryggvason, G., Numerical simulation of dendritic solidification with convection: three-dimensional flow, J Comput Phys, 194, 2, 677-696, (2004) · Zbl 1100.76050
[20] Juric, D.; Tryggvason, G., A front-tracking method for dendritic solidification, J Comput Phys, 123, 1, 127-148, (1996) · Zbl 0843.65093
[21] Vu, T. V.; Tryggvason, G.; Homma, S.; Wells, J. C., Numerical investigations of drop solidification on a cold plate in the presence of volume change, Int J Multiph Flow, 76, 73-85, (2015)
[22] Qian, J.; Tryggvason, G.; Law, C., A front tracking method for the motion of premixed flames, J Comput Phys, 144, 1, 52-69, (1998) · Zbl 1392.76050
[23] Koynov, A.; Khinast, J. G.; Tryggvason, G., Mass transfer and chemical reactions in bubble swarms with dynamic interfaces, AlChE J, 51, 10, 2786-2800, (2005)
[24] Aboulhasanzadeh, B.; Thomas, S.; Taeibi-Rahni, M.; Tryggvason, G., Multiscale computations of mass transfer from buoyant bubbles, Chem Eng Sci, 75, 456-467, (2012)
[25] Godsave, G., Studies of the combustion of drops in a fuel spray?the burning of single drops of fuel, Symp Int Combust, 4, 1, 818-830, (1953)
[26] Spalding, D., The combustion of liquid fuels, Symp Int Combust, 4, 1, 847-864, (1953)
[27] Faeth, G., Current status of droplet and liquid combustion, Prog Energy Combust Sci, 3, 4, 191-224, (1977)
[28] Law, C.; Chung, S.; Srinivasan, N., Gas-phase quasi-steadiness and fuel vapor accumulation effects in droplet burning, Combust Flame, 38, 173-198, (1980)
[29] Law, C., Recent advances in droplet vaporization and combustion, Prog Energy Combust Sci, 8, 3, 171-201, (1982)
[30] Sirignano, W. A., Fuel droplet vaporization and spray combustion theory, Prog Energy Combust Sci, 9, 4, 291-322, (1983)
[31] Lefebvre, A. H., Atomization and sprays, (1989), Hemisphere Publishing Corporation New York
[32] Toker, G.; Stricker, J., Holographic study of suspended vaporizing volatile liquid droplets in still air, Int J Heat Mass Transfer, 39, 16, 3475-3482, (1996)
[33] Sazhin, S.; Abdelghaffar, W.; Sazhina, E.; Heikal, M., Models for droplet transient heating: effects on droplet evaporation, ignition, and break-up, Int J Therm Sci, 44, 7, 610-622, (2005) · Zbl 1188.76263
[34] Abramzon, B.; Sirignano, W., Droplet vaporization model for spray combustion calculations, Int J Heat Mass Transfer, 32, 9, 1605-1618, (1989)
[35] Sazhin, S. S., Advanced models of fuel droplet heating and evaporation, Prog Energy Combust Sci, 32, 2, 162-214, (2006)
[36] Sirignano, W. A., Fluid dynamics and transport of droplets and sprays, (2010), Cambridge University Press
[37] Downing, C. G., The evaporation of drops of pure liquids at elevated temperatures: rates of evaporation and wet-bulb temperatures, AIChE J, 12, 4, 760-766, (1966)
[38] Yuen, M. C.; Chen, L. W., On drag of evaporating liquid droplets, Comb Sci Tech, 14, 4-6, 147-154, (1976)
[39] Wong, S. C.; Lin, A. C., Internal temperature distributions of droplets vaporizing in high-temperature convective flows, J Fluid Mech, 237, 671-687, (1992)
[40] Nomura, H.; Ujiie, Y.; Rath, H. J.; Sato, J.; Kono, M., Experimental study on high-pressure droplet evaporation using microgravity conditions, Proc Combust Inst, 26, 1, 1267-1273, (1996)
[41] Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G., Single droplet combustion of decane in microgravity: experiments and numerical modelling, Combust Theory Model, 9, 4, 569-585, (2005) · Zbl 1086.80002
[42] Miller, R.; Harstad, K.; Bellan, J., Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, Int J Multiph Flow, 24, 6, 1025-1055, (1998) · Zbl 1121.76460
[43] Zhang, H., Numerical research on a vaporizing fuel droplet in a forced convective environment, Int J Multiphase Flow, 30, 2, 181-198, (2004) · Zbl 1136.76695
[44] Cho, S.; Dryer, F., A numerical study of the unsteady burning behaviour of n-heptane droplets, Combust Theory Model, 3, 2, 267-280, (1999) · Zbl 0939.80504
[45] Stauch, R.; Lipp, S.; Maas, U., Detailed numerical simulations of the autoignition of single n-heptane droplets in air, Combust Flame, 145, 3, 533-542, (2006) · Zbl 1310.76177
[46] Wang, Y.; Rutland, C., Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets, Combust Flame, 149, 4, 353-365, (2007)
[47] Awasthi, I.; Pope, D. N.; Gogos, G., Effects of the ambient temperature and initial diameter in droplet combustion, Combust Flame, 161, 7, 1883-1899, (2014)
[48] Ashna, M.; Rahimian, M. H., LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime, Int J Heat Mass Transfer, 109, 520-536, (2017)
[49] Stauch, R.; Maas, U., The ignition of methanol droplets in a laminar convective environment, Combust Flame, 153, 1, 45-57, (2008)
[50] Awasthi, I.; Gogos, G.; Sundararajan, T., Effects of size on combustion of isolated methanol droplets, Combust Flame, 160, 9, 1789-1802, (2013)
[51] Turns, S., An introduction to combustion: concepts and applications, (2000), McGraw-Hill New York
[52] Day, M. S.; Bell, J. B., Numerical simulation of laminar reacting flows with complex chemistry, Combust Theory Model, 4, 4, 535-556, (2000) · Zbl 0970.76065
[53] Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E., Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method, Energy Fuels, 27, 12, 7730-7753, (2013)
[54] Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E., A computational tool for the detailed kinetic modeling of laminar flames: application to c_2h_4/CH_4 coflow flames, Combust Flame, 160, 5, 870-886, (2013)
[55] Namara, S. M.; Strang, G., Operator splitting, 95-114, (2016), Springer International Publishing · Zbl 1372.65236
[56] Kee R., Rupley F., Miller J.. Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. 1989.
[57] Kee R.J., Rupley F.M., Meeks E., Miller J.A.. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Sandia National Laboratories report SAND96-8216.
[58] Jin, Y.; Shaw, B., Computational modeling of n-heptane droplet combustion in air?diluent environments under reduced-gravity, Int J Heat Mass Transfer, 53, 25, 5782-5791, (2010) · Zbl 1201.80072
[59] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct numerical simulations of gas-liquid multiphase flows, (2011), Cambridge University Press · Zbl 1226.76001
[60] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 3, 220-252, (1977) · Zbl 0403.76100
[61] Leonard, B., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput Methods Appl Mech Eng, 19, 1, 59-98, (1979) · Zbl 0423.76070
[62] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math Comp, 22, 745-762, (1968) · Zbl 0198.50103
[63] Adams, J. C., MUDPACK: multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations, Appl Math Comput, 34, 2, 113-146, (1989) · Zbl 0685.65091
[64] Udaykumar, H. S.; Shyy, W.; Rao, M. M., ELAFINT: A mixed eulerian?Lagrangian method for fluid flows with complex and moving boundaries, Int J Numer Meth Fl, 22, 8, 691-712, (1996) · Zbl 0887.76059
[65] Brown, P. N.; Byrne, G. D.; Hindmarsh, A. C., VODE: A variable-coefficient ODE solver, SIAM J Sci Stat Comput, 10, 5, 1038-1051, (1989) · Zbl 0677.65075
[66] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J Comput Phys, 227, 6, 3191-3211, (2008) · Zbl 1136.65076
[67] Gibou, F.; Fedkiw, R. P.; Cheng, L. T.; Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J Comput Phys, 176, 1, 205-227, (2002) · Zbl 0996.65108
[68] Sato, Y.; Niceno, B., A sharp-interface phase change model for a mass-conservative interface tracking method, J Comput Phys, 249, 127-161, (2013)
[69] Muradoglu, M.; Tryggvason, G., A front-tracking method for computation of interfacial flows with soluble surfactants, J Comput Phys, 227, 4, 2238-2262, (2008) · Zbl 1329.76238
[70] Muradoglu, M.; Tryggvason, G., Simulations of soluble surfactants in 3d multiphase flow, J Comput Phys, 274, 737-757, (2014) · Zbl 1351.76174
[71] Han, J.; Tryggvason, G., Secondary breakup of axisymmetric liquid drops. i. acceleration by a constant body force, Phys Fluids, 11, 12, 3650-3667, (1999) · Zbl 1149.76400
[72] Muradoglu, M.; Kayaalp, A. D., An auxiliary grid method for computations of multiphase flows in complex geometries, J Comput Phys, 214, 2, 858-877, (2006) · Zbl 1136.76410
[73] Williams, G., Combustion theory, (1985), Addison-Wesley
[74] Yang, J. R.; Wong, S. C., An experimental and theoretical study of the effects of heat conduction through the support fiber on the evaporation of a droplet in a weakly convective flow, Int J Heat Mass Transfer, 45, 23, 4589-4598, (2002)
[75] Chauveau, C.; Birouk, M.; Gökalp, I., An analysis of the d2-law departure during droplet evaporation in microgravity, Int J Multiphase Flow, 37, 3, 252-259, (2011)
[76] Hara, H.; Kumagai, S., Experimental investigation of free droplet combustion under microgravity, Proc Combust Inst, 23, 1, 1605-1610, (1991)
[77] Jackson, G. S.; Avedisian, C. T., The effect of initial diameter in spherically symmetric droplet combustion of sooting fuels, Proc R Soc London Ser A Math Phys Eng Sci, 446, 1927, 255-276, (1994)
[78] Vieille, B.; Chauveau, C.; Chesneau, X.; Odeïde, A.; Gökalp, I., High-pressure droplet burning experiments in microgravity, Proc Combust Inst, 26, 1, 1259-1265, (1996)
[79] Maroteaux, F.; Noel, L., Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling, Combust Flame, 146, 1, 246-267, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.