Audoux, Benjamin; Bellingeri, Paolo; Meilhan, Jean-Baptiste; Wagner, Emmanuel Extensions of some classical local moves on knot diagrams. (English) Zbl 1406.57003 Mich. Math. J. 67, No. 3, 647-672 (2018). This paper consists in a study of a series of local moves on classical and welded string link diagrams. The authors distinguish classical local moves, involving only classical crossings (crossing change move \(CC\), self-crossing change \(SC\), Delta move \(\Delta\), band-pass move \(BP\)) and non-classical local moves involving also virtual/welded crossings (virtualization move \(V\), self-virtualization move \(SV\), virtual conjugation move \(VC\), fused move \(F\), welded band-pass move \(wBP\)).They translate these moves to the language of Gauss diagrams, which appear to be significantly more efficient than usual knotted objects’ diagrams for handling global manipulations. Using Gauss diagrams as a tool, they describe the interrelation of the local moves. This leads to their main result: a complete classification of welded string links up to each one of the considered moves in terms of virtual linking numbers. They remark that, considering ribbon tubes [B. Audoux et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 17, No. 2, 713–761 (2017; Zbl 1375.57032)] as a topological incarnation of welded diagrams through the tube map [S. Satoh, J. Knot Theory Ramifications 9, No. 4, 531–542 (2000; Zbl 0997.57037)], the virtual linking numbers correspond to the evaluation of any longitude of the components of the ribbon tube in \(\mathbb Z\).As a consequence of the main result, they obtain that \(VC\), \(\Delta\), \(F\), \(BP\) and \(wBP\) are unknotting operations for welded knots.The main result and its consequence fill two literature gaps: the first one has been partially explored by A. Fish and E. Keyman [J. Knot Theory Ramifications 25, No. 7, Article ID 1650042, 8 p. (2016; Zbl 1353.57008)], who proved that welded links with only classical crossings up to \(F\) are classified by their linking numbers; the second one by S. Satoh [Rocky Mt. J. Math. 48, No. 3, 967–879 (2018; Zbl 1397.57018)] who proved that some of these local moves are unknotting operations for welded knots.Finally the authors transport the results obtained for classical and welded string links to the case of welded links and welded braids.Throughout the paper the authors give a careful literature review and plenty of well addressed references, and clearly highlight the topological implications of their work. Reviewer: Celeste Damiani (Leeds) Cited in 1 ReviewCited in 7 Documents MSC: 57M25 Knots and links in the \(3\)-sphere (MSC2010) 57Q45 Knots and links in high dimensions (PL-topology) (MSC2010) 57M27 Invariants of knots and \(3\)-manifolds (MSC2010) 20F36 Braid groups; Artin groups Keywords:knot; link; string-link; welded knot; welded link; welded string-link; welded braid; virtual knot; virtual link; virtual string link; invariant; linking number; virtual linking number; unknotting operation; local move; crossing change; Delta move; band-pass move; Gauss diagram; fused link Citations:Zbl 1375.57032; Zbl 0997.57037; Zbl 1353.57008; Zbl 1397.57018 PDF BibTeX XML Cite \textit{B. Audoux} et al., Mich. Math. J. 67, No. 3, 647--672 (2018; Zbl 1406.57003) Full Text: DOI arXiv Euclid OpenURL References: [1] H. Aida, The oriented \({Δ}_{ij}\)-moves on links, Kobe J. Math. 9 (1992), no. 2, 163–170. · Zbl 0801.57002 [2] B. Audoux, On the welded Tube map, Contemp. Math. 670 (2016), 261–284. · Zbl 1358.57025 [3] B. Audoux, P. Bellingeri, J.-B. Meilhan, and E. Wagner, Homotopy classification of ribbon tubes and welded string links, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 2, 713–761. · Zbl 1375.57032 [4] B. Audoux, P. Bellingeri, J.-B. Meilhan, and E. Wagner, On usual, virtual and welded knotted objects up to homotopy, J. Math. Soc. Japan, 69 (2017), no. 3, 1079–1097. · Zbl 1391.57004 [5] B. Audoux, J.-B. Meilhan, and E. Wagner, On codimension two embeddings up to link-homotopy, J. Topol., 10 (2017), no. 4, 1107–1123. · Zbl 1386.57027 [6] D. Bar-Natan and Z. Dancso, Finite-type invariants of w-knotted objects, I: w-knots and the Alexander polynomial, Algebr. Geom. Topol. 16 (2016), no. 2, 1063–1133. · Zbl 1339.57006 [7] V. G. Bardakov, P. Bellingeri, and C. Damiani, Unrestricted virtual braids, fused links and other quotients of virtual braid groups, J. Knot Theory Ramifications 24 (2015), no. 12, 1550063. · Zbl 1360.20026 [8] T. E. Brendle and A. Hatcher, Configuration spaces of rings and wickets, Comment. Math. Helv. 88 (2013), no. 1, 131–162. · Zbl 1267.57002 [9] J.S. Carter, S. Kamada, and M. Saito, Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications 11 (2002), no. 3, 311–322; Knots 2000 Korea, Vol. 1 (Yongpyong). · Zbl 1004.57007 [10] J.S. Carter, S. Kamada, M. Saito, and S. Satoh, A theorem of Sanderson on link bordisms in dimension \(4\), Algebr. Geom. Topol. 1 (2001), 299–310 (electronic). · Zbl 0973.57010 [11] B. A. Cisneros De La Cruz, Virtual braids from a topological viewpoint, J. Knot Theory Ramifications 24 (2015), no. 6, 1550033. · Zbl 1327.57004 [12] C. Damiani, A journey through loop braid groups, Expo. Math., 35, (2017), 252–285. · Zbl 1403.20052 [13] R. Fenn, R. Rimányi, and C. Rourke, The braid-permutation group, Topology 36 (1997), no. 1, 123–135. · Zbl 0861.57010 [14] T. Fiedler, Gauss diagram invariants for knots and links, Math. Appl., 532, Kluwer Academic Publishers, Dordrecht, 2001. · Zbl 1009.57001 [15] A. Fish and E. Keyman, Classifying links under fused isotopy, J. Knot Theory Ramifications 25 (2016), no. 7, 1650042. · Zbl 1353.57008 [16] M. Goussarov, M. Polyak, and O. Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000), no. 5, 1045–1068. · Zbl 1006.57005 [17] N. Habegger and X.-S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990), 389–419. · Zbl 0704.57016 [18] L. H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690. · Zbl 0938.57006 [19] L. H. Kauffman, A survey of virtual knot theory, Knots in Hellas ’98 (Delphi), Ser. Knots Everything, 24, pp. 143–202, World Sci. Publ., River Edge, NJ, 2000. · Zbl 1054.57001 [20] L. H. Kauffman and S. Lambropoulou, Virtual braids, Fund. Math. 184 (2004), 159–186. · Zbl 1068.57006 [21] L. H. Kauffman and S. Lambropoulou, Virtual braids and the \(L\)-move, J. Knot Theory Ramifications 15 (2006), no. 6, 773–811. · Zbl 1105.57002 [22] A. Kawauchi, A survey of knot theory, Birkhäuser, Basel, 1996. · Zbl 0861.57001 [23] S. V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987), no. 2, 268–278, 345. · Zbl 0634.57006 [24] J.-B. Meilhan, On Vassiliev invariants of order two for string links, J. Knot Theory Ramifications 14 (2005), no. 5, 665–687. · Zbl 1077.57011 [25] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195. · Zbl 0055.16901 [26] H. Murakami, Some metrics on classical knots, Math. Ann. 270 (1985), 35–45. · Zbl 0535.57005 [27] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), no. 1, 75–89. · Zbl 0646.57005 [28] K. Murasugi and B. I. Kurpita, A study of braids, Math. Appl., 484, Kluwer Academic Publishers, Dordrecht, 1999. · Zbl 0938.57001 [29] Y. Nakanishi, Fox’s congruence modulo \((2,1)\), Sûrikaisekikenkyûsho Kôkyûroku 813 (1985), 102–110. [30] Y. Nakanishi, Replacements in the Conway third identity, Tokyo J. Math. 14 (1991), no. 1, 197–203. · Zbl 0742.57007 [31] T. Nasybullov, The classification of fused links, J. Knot Theory Ramifications 25 (2016), no. 21, 1650076. · Zbl 1383.57012 [32] K. Reidemeister, Unveränderter reprografischer, Einführung in die kombinatorische Topologie, Nachdr. Ausg. Braunschw., Wissenschaftliche Buchgesellschaft, Darmstadt, 1972. Unveränderter reprografischer Nachdruck der Ausgabe Braunschweig 1951. [33] B. J. Sanderson, Bordism of links in codimension \(2\), J. Lond. Math. Soc. (2) 35 (1987), no. 2, 367–376. · Zbl 0622.57026 [34] B. J. Sanderson, Triple links in codimension \(2\), Topology. Theory and applications, II (Pécs, 1989), Colloq. Math. Soc. János Bolyai, 55, pp. 457–471, North-Holland, Amsterdam, 1993. · Zbl 0815.57016 [35] S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), no. 4, 531–542. · Zbl 0997.57037 [36] S. Satoh, Crossing changes, delta moves and sharp moves on welded knots, Rocky Mountain J. Math. (2015, to appear), arXiv:1510.02554. · Zbl 1397.57018 [37] B. Winter, The classification of spun torus knots, J. Knot Theory Ramifications 18 (2009), no. 9, 1287–1298. · Zbl 1190.57016 [38] T. Yajima, On the fundamental groups of knotted \(2\)-manifolds in the \(4\)-space, J. Math., Osaka City Univ. 13 (1962), 63–71. · Zbl 0118.39301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.