zbMATH — the first resource for mathematics

Stickelberger elements and modular parametrizations of elliptic curves. (English) Zbl 0697.14023
The author begins a study of modular parametrizations of elliptic curves over \({\mathbb{Q}}\) which leads him to a basic conjecture that if E is a modular elliptic curve of level N, then there is a unique parametrization \(X_ 1(N)\to E\) for which the Manin constant is \(\pm 1\). In the course of his study the author naturally singles out, in each \({\mathbb{Q}}\)-isogeny class \({\mathcal A}\) (of modular elliptic curves of level N), an elliptic curve \(E_ 1\) whose \(X_ 1(N)\)-parametrization is optimal in the sense that if \(X_ 1(N)\to^{\pi}E\) is a parametrization of the curve \(E\in {\mathcal A}\) then there is an isogeny \(\beta: E_ 1\to E\) such that \[ \begin{matrix} X_1(N) & @>\pi>> & E_1 \\ &_\pi\searrow & \downarrow\text{\rlap{\(\gamma\)}} \\ && E \end{matrix} \text{\quad commutes.} \] commutes. It is then easy to see that, as a consequence of the above conjecture, the optimal curve in an isogeny class is the curve of minimal Parshin-Faltings height. Using results of K. Rubin [Invent. Math. 71, 339-364 (1983; Zbl 0513.14012)] the author is able to verify this equality for certain \({\mathbb{Q}}\)-isogeny classes of elliptic curves with complex multiplication.
The author also defines a collection \(\{\theta_ M:\) M a positive integer} of Stickelberger elements (with values in the \({\mathbb{Q}}\)-span of the lattices of Néron periods of E) which are closely related to the Stickelberger elements of B. Mazur and J. Tate [Duke Math. J. 54, 711-750 (1987; Zbl 0636.14004)]. By analogy with Stickelberger elements attached to totally real fields, the author conjectures certain integrality properties of \(\theta_ M\). He then shows that these integrality properties are implied by his basic conjecture on modular parametrizations. - Further investigation shows that the integrality of the p-adic measures (attached to \({\mathcal A})\) of Mazur and Swinnerton-Dyer is also implied by the author’s conjecture (at least for \(p\neq 2).\)
In addition, the author shows that if the basic conjecture is true for a class \({\mathcal A}\) then it is also true for all twists by quadratic characters which are unramified at the primes of additive reduction.
Finally, the author cites numerical verification of the basic conjecture for the 749 curves of conductor less than 200 listed in the Antwerp tables.
Reviewer: S.Kamienny

14H45 Special algebraic curves and curves of low genus
14G25 Global ground fields in algebraic geometry
11F11 Holomorphic modular forms of integral weight
14H52 Elliptic curves
Full Text: DOI EuDML
[1] Carayol, H.: Sur les representationsl-adiques attachées aux formes modulaires de Hilbert. C.R. Acad. Sci. Paris Sér. I Math.296, 629-632 (1983) · Zbl 0537.10018
[2] Cox, D.: Gauss and the arithmetic-geometric mean. Notices of the Am. Math. Sci.32, 147-151 (1985)
[3] Deligne, P.: Preuve des conjectures de Tate et de Shafarevitch [d’aprèv G. Faltings]. Séminaire Bourbaki, 36e année,616, 1983/84
[4] Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Deligne, P., Kuijk, W. (eds.) Modular Forms in One Variable II. Proceedings Antwerp 1872. (Lect. Notes Math., vol. 349) Berlin Heidelberg New York: Springer 1973 · Zbl 0281.14010
[5] Deligne, P., Ribet, K.: Values of AbelianL-functions at negative integers over totally real fields. Invent. Math.59, 227-286 (1980) · Zbl 0434.12009 · doi:10.1007/BF01453237
[6] Drinfeld, V.G.: Two theorems on modular curves. Funct. Anal. App.7, 155-156 (1973) · Zbl 0285.14006 · doi:10.1007/BF01078890
[7] Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math.73, 349-366 (1983) · Zbl 0588.14026 · doi:10.1007/BF01388432
[8] Greenberg, R.: Iwasawa theory forp-adic representations. (To appear in Adv. Stud. Pure Math.17)
[9] Gross, B.H.: Arithmetic on elliptic curves with complex multiplication. (Lect. Notes Math., vol. 776) Berlin Heidelberg New York: Springer 1980 · Zbl 0433.14032
[10] Katz, N.:P-adicL-functions via moduli of elliptic curves. Algebraic Geometry Arcata 1974, Proc. Symp. Pure Math.29, 479-506 (1975)
[11] Manin, J.: Parabolic points and zeta functions of modular curves (Russian). Izv. Akad. Nauk SSSR Ser. Mat.36, 19-65 (1972). Engl. transl. in Math. USSR-Izv.6, 19-64 (1972) · Zbl 0243.14008
[12] Mazur, B.: On the arithmetic of special values ofL-functions. Invent. Math.55, 207-240 (1979) · Zbl 0426.14009 · doi:10.1007/BF01406841
[13] Mazur, B.: Rational isogenies of prime degree. Invent. Math.44, 129-162 (1978) · Zbl 0386.14009 · doi:10.1007/BF01390348
[14] Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math.25, 1-16 (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[15] Mazur, B., Tate, J.: Refined conjectures of the ?Birch and Swinnerton-Dyer type?. Duke Math. J.54, 711-750 (1987) · Zbl 0636.14004 · doi:10.1215/S0012-7094-87-05431-7
[16] Mazur, B., Tate, J., Teitelbaum, J.: Onp-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math.84, 1-48 (1986) · Zbl 0699.14028 · doi:10.1007/BF01388731
[17] Raynaud, M.: Schémas en groupes de type (p, ...p). Bull. Soc., Math. Fr.102, 241-280 (1974) · Zbl 0325.14020
[18] Rubin, K.: Congruences for special values ofL-functions of elliptic curves with complex multiplication. Invent. Math.71, 339-364 (1983) · Zbl 0513.14012 · doi:10.1007/BF01389102
[19] Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Publications of the Mathematical Society of Japan 11. Princeton: Princeton University Press 1971 · Zbl 0221.10029
[20] Stevens, G.: Atithmetic on modular curves. Progr. Math. 20. Boston: Birkhäuser 1982 · Zbl 0529.10028
[21] Stevens, G.: The cuspidal group and special values ofL-functions. Trans. Am. Math. Soc.291, 519-549 (1985) · Zbl 0579.10011
[22] Swinnerton-Dyer, P., et al.: table 1; Modular functions of one variable (Lect. Notes Math., vol. 476, pp. 81-113) Berlin Heidelberg New York: Springer 1975
[23] Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Birch, B., Kuijk, W. (eds.) Modular functions of one variable. (Lect. Notes Math., vol. 476, pp. 33-52) Berlin Heidelberg New York: Springer 1975 · Zbl 1214.14020
[24] Wohlfahrt, K.: An extension of F. Klein’s level concept. Ill. J. Math.8, 529-535 (1964) · Zbl 0135.29101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.