×

zbMATH — the first resource for mathematics

Robust probabilistic classification applicable to irregularly sampled functional data. (English) Zbl 06970979
Summary: A robust probabilistic classifier for functional data is developed to predict class membership based on functional input measurements and to provide a reliable probability estimate for class membership. The method combines a Bayes classifier and semi-parametric mixed effects model with robust tuning parameter to make the method robust to outlying curves, and to improve the accuracy of the risk or uncertainty estimates, which is crucial in medical diagnostic applications. The approach applies to functional data with varying ranges and irregular sampling without making parametric assumptions on the within-curve covariance. Simulation studies evaluate the proposed method and competitors in terms of sensitivity to heavy tailed functional distributions and outlying curves. Classification performance is evaluated by both error rate and logloss, the latter of which imposes heavier penalties on highly confident errors than on less confident errors. Run-time experiments on the R implementation indicate that the proposed method scales well computationally. Illustrative applications include data from quantitative ultrasound analysis and phoneme recognition.

MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Araki, Y.; Konishi, S.; Kawano, S.; Matsui, H., Functional logistic discrimination via regularized basis expansions, Commun. Stat.-Theory Methods, 38, 16-17, 2944-2957, (2009) · Zbl 1175.62061
[2] Bali, J.; Boente, G.; Tyler, D.; Wang, J. L., Robust functional principal components: A projection-pursuit approach, Ann. Statist., 39, 6, 2852-2882, (2011) · Zbl 1246.62145
[3] Berhane, K.; Molitor, N.-T., A Bayesian approach to functional-based multilevel modeling of longitudinal data: applications to environmental epidemiology, Biostatistics, 9, 4, 686-699, (2008)
[4] Biau, G.; Bunea, F.; Wegkamp, M., Functional classification in Hilbert spaces, IEEE Trans. Inform. Theory, 51, 6, 2163-2172, (2005) · Zbl 1285.94015
[5] Biau, G.; Cérou, F.; Guyader, A., Rates of convergence of the functional k-nearest neighbor estimate, IEEE Trans. Inform. Theory, 56, 4, 2034-2040, (2010) · Zbl 1366.62080
[6] Boente, G.; Salibian-Barrera, M., S-estimators for functional principal component, J. Amer. Statist. Assoc., 110, 511, 1100-1111, (2015) · Zbl 1373.62290
[7] Cérou, F.; Guyader, A., Nearest neighbor classification in infinite dimension, ESAIM Probab. Stat., 10, 340-355, (2006) · Zbl 1187.62115
[8] Dai, X.; Müller, H.-G.; Yao, F., Optimal Bayes classifiers for functional data and density ratios, Biometrika, 104, 3, 545-560, (2017)
[9] Delaigle, A.; Hall, P., Classification using censored functional data, J. Amer. Statist. Assoc., 108, 504, 1269-1283, (2013) · Zbl 1288.62104
[10] Delattre, M.; Lavielle, M.; Poursat, M.-A., A note on BIC in mixed-effects models, Electron. J. Stat., 8, 1, 456-475, (2014) · Zbl 1348.62186
[11] Ferraty, F.; Vieu, P., Curves discrimination: A nonparametric functional approach, Comput. Statist. Data Anal., 44, 1-2, 161-173, (2003) · Zbl 1429.62241
[12] Fuchs, K.; Gertheiss, J.; Tutz, G., Nearest neighbor ensembles for functional data with interpretable feature selection, Chemometr. Intell. Lab. Syst., 146, 186-197, (2015)
[13] Genz, A.; Bretz, F.; Miwa, T.; Mi, X.; Leisch, F.; Scheipl, F.; Hothorn, T., Mvtnorm: multivariate normal and t distributions, (2017), R package version 1.0-6. URL http://CRAN.R-project.org/package=mvtnorm
[14] Goldsmith, J.; Bobb, J.; Crainiceanu, C.; Caffo, B.; Reich, D., Penalized functional regression, J. Comput. Graph. Statist., 20, 4, 830-851, (2011)
[15] Greven, S.; Scheipl, F., A general framework for functional regression modelling, Stat. Model., 17, 1-2, 1-35, (2017)
[16] Hall, P.; Poskitt, D.; Presnell, B., A functional data-analytic approach to signal discrimination, Technometrics, 43, 1, 1-9, (2001) · Zbl 1072.62686
[17] Hastie, T.; Tibshirani, R.; Friedman, J., The elements of statistical learning, (2009), Springer New York
[18] James, G., Generalized linear models with functional predictors, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 3, 411-432, (2002) · Zbl 1090.62070
[19] James, G.; Hastie, T., Functional linear discriminant analysis for irregularly sampled curves, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 3, 533-550, (2001) · Zbl 0989.62036
[20] James, G.; Hastie, T.; Sugar, C., Principal component models for sparse functional data, Biometrika, 87, 3, 587-602, (2000) · Zbl 0962.62056
[21] McLean, M.; Hooker, G.; Staicu, A. M.; Scheipl, F.; Ruppert, D., Functional generalized additive models, J. Comput. Graph. Statist., 23, 1, 249-269, (2014)
[22] Morris, J., Functional regression, Annu. Rev. Stat. Appl., 2, 1, 321-359, (2015)
[23] Müller, H.-G., Functional modeling and classification of longitudinal data, Scand. J. Stat., 32, 2, 223-240, (2005) · Zbl 1089.62072
[24] Müller, H.-G.; Stadtmüller, U., Generalized functional linear models, Ann. Statist., 33, 2, 774-805, (2005) · Zbl 1068.62048
[25] Nolan, R.; Adie, S.; Marjanovic, M.; Chaney, E.; South, F.; Monroy, G.; S., N. D.; Erickson-Bhatt, S.; Shelton, R.; Bower, A.; Simpson, D.; Cradock, K.; Liu, Z.; Ray, P.; Boppart, S., Intraoperative optical coherence tomography for assessing human lymph nodes for metastatic cancer, BMC Cancer, 16, 1, 144, (2016)
[26] Osorio, F., Heavy: robust estimation using heavy-tailed distributions, (2018), R package version 0.38.19. URL https://CRAN.R-project.org/package=heavy
[27] Pinheiro, J.; Liu, C.; Wu, Y., Efficient algorithm for robust estimation in linear mixed-effects models using the multivariate t-distribution, J. Comput. Graph. Statist., 10, 2, 249-276, (2001)
[28] Rice, J.; Wu, C., Nonparametric mixed effects models for unequally sampled noisy curves, Biometrics, 57, 1, 253-259, (2001) · Zbl 1209.62061
[29] Shi, M.; Weiss, R.; Taylor, J., An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves, J. R. Stat. Soc. Ser. C. Appl. Stat., 45, 2, 151-163, (1996) · Zbl 0875.62574
[30] Wang, K.; Liang, M.; Tian, L.; Zhang, X.; Li, K.; Jiang, T., Altered functional connectivity in early alzheimer’s disease: A resting-state fMRI study, Hum. Brain Mapp., 28, 10, 967-978, (2007)
[31] Wirtzfeld, L.; Ghoshal, G.; Rosado-Mendez, I.; Nam, K.; Kumar, V.; Park, Y.; Pawlicki, A.; Miller, R.; Simpson, D.; Zagzebski, J.; Oelze, M.; Hall, T.; OBrien Jr., W., Quantitative ultrasound comparison of MAT and 4T1 mammary tumors in mice and rats across multiple imaging systems, J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med., 34, 8, 1373-1383, (2015)
[32] Wirtzfeld, L.; Nam, K.; Labyed, Y.; Ghoshal, G.; Haak, A.; Sen-Gupta, E.; He, Z.; Hirtz, N.; M., R. J.; Sarwate, S.; Simpson, D.; Zagzebski, J.; Bigelow, T.; Oelze, M.; Hall, T.; OBrien Jr., W., Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60, 7, 1386-1400, (2013)
[33] Yan, Y., Mlmetrics: machine learning evaluation metrics, (2016), R package version 1.1.1. URL https://CRAN.R-project.org/package=MLmetrics
[34] Zhu, H.; Brown, P.; Morris, J., Robust classification of functional and quantitative image data using functional mixed models, Biometrics, 68, 4, 1260-1268, (2012) · Zbl 1259.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.