×

zbMATH — the first resource for mathematics

Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random. (English) Zbl 06970983
Summary: Two different methods for estimation, imputation and prediction for the functional linear model with scalar response when some of the responses are missing at random (MAR) are developed. The simplified method consists in estimating the model parameters using only the pairs of predictors and responses observed completely. In addition the imputed method consists in estimating the model parameters using both the pairs of predictors and responses observed completely and the pairs of predictors and responses imputed with the parameters estimated with the simplified method. The two methodologies are compared in an extensive simulation study and the analysis of two real data examples. The comparison provides evidence that the imputed method might have better performance than the simplified method if the numbers of functional principal components used in the former strategy are selected appropriately.

MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cai, T. T.; Hall, P., Prediction in functional linear regression, Ann. Statist., 34, 2159-2179, (2006) · Zbl 1106.62036
[2] Cardot, H.; Ferraty, F.; Sarda, P., Functional linear model, Statist. Probab. Lett., 45, 11-22, (1999) · Zbl 0962.62081
[3] Cardot, H.; Ferraty, F.; Sarda, P., Spline estimators for the functional linear model, Statist. Sinica, 13, 571-591, (2003) · Zbl 1050.62041
[4] Cardot, H.; Mas, A.; Sarda, P., CLT in functional linear regression models, Probab. Theory Related Fields, 138, 325-361, (2007) · Zbl 1113.60025
[5] Chiou, J. M.; Müller, H. G., Diagnostics for functional regression via residual processes, Comput. Statist. Data Anal., 51, 4849-4863, (2007) · Zbl 1162.62394
[6] Crambes, C., Henchiri, Y., 2018. Regression imputation in the functional linear model with missing values in the response. <hal-01521954v4>.
[7] Cuesta-Albertos, J. A.; García-Portugués, E.; González-Manteiga, W.; Febrero-Bande, M., Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes, Ann. Statist., (2018), (forthcoming)
[8] Cuevas, A., A partial overview of the theory of statistics with functional data, J. Statist. Plann. Inference, 147, 1-23, (2014) · Zbl 1278.62012
[9] Febrero-Bande, M.; Galeano, P.; González-Manteiga, W., Functional principal component regression and functional partial least squares regression: an overview and a comparative study, Internat. Statist. Rev., 85, 61-83, (2017)
[10] Ferraty, F.; González-Manteiga, W.; Martínez-Calvo, A.; Vieu, P., Presmoothing in functional linear regression, Statist. Sinica, 22, 69-94, (2012) · Zbl 1417.62189
[11] Ferraty, F.; Sued, M.; Vieu, P., Mean estimation with data missing at random for functional covariables, Statistics, 47, 688-706, (2013) · Zbl 1440.62129
[12] Ferraty, F.; Vieu, P., Nonparametric functional data analysis, (2006), Springer · Zbl 1119.62046
[13] García-Portugués, E.; González-Manteiga, W.; Febrero-Bande, M., A goodness-of-fit test for the functional linear model with scalar response, J. Comput. Graph. Statist., 23, 761-778, (2014)
[14] Goia, A.; Vieu, P., An introduction to recent advances in high/infinite dimensional statistics, J. Multivariate Anal., 146, 1-6, (2016) · Zbl 1384.00073
[15] Greven, S.; Scheipl, F., A general framework for functional regression modelling, Stat. Model., 17, 1-35, (2017)
[16] Hall, P.; Horowitz, J. L., Methodology and convergence rates for functional linear regression, Ann. Statist., 35, 70-91, (2007) · Zbl 1114.62048
[17] Hall, P.; Hosseini-Nasab, M., On properties of functional principal components analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 109-126, (2006) · Zbl 1141.62048
[18] Horváth, L.; Kokoszka, P., Inference for functional data with applications, (2012), Springer · Zbl 1279.62017
[19] Hsing, T.; Eubank, R., Theoretical foundations of functional data analysis, with an introduction to linear operators, (2015), Wiley · Zbl 1338.62009
[20] Kokoszka, P.; Oja, H.; Park, B.; Sangalli, L., Special issue on functional data analysis, Econom. Stat., 1, 99-100, (2017)
[21] Kokoszka, P.; Reimherr, M., Introduction to functional data analysis, (2017), CRC Press
[22] Li, Y.; Hsing, T., On rates of convergence in functional linear regression, J. Multivariate Anal., 98, 1782-1804, (2007) · Zbl 1130.62035
[23] Ling, N.; Liang, L.; Vieu, P., Nonparametric regression estimation for functional stationary ergodic data with missing at random, J. Statist. Plann. Inference, 162, 75-87, (2015) · Zbl 1314.62102
[24] Ling, N.; Liu, Y.; Vieu, P., Conditional mode estimation for functional stationary ergodic data with responses missing at random, Statistics, 50, 991-1013, (2016) · Zbl 1358.62036
[25] Ramsay, J. O.; Silverman, B. W., Functional data analysis, (2006), Springer · Zbl 1079.62006
[26] Reiss, P. T.; Goldsmith, J.; Shang, H. L.; Ogden, R. T., Methods for scalar-on-function regression, Internat. Statist. Rev., 85, 228-249, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.