zbMATH — the first resource for mathematics

Symmetric blind information reconciliation and hash-function-based verification for quantum key distribution. (English) Zbl 1444.94067
Summary: We consider an information reconciliation protocol for quantum key distribution (QKD). In order to correct down the error rate, we suggest a method, which is based on symmetric blind information reconciliation for the low-density parity-check (LDPC) codes. We develop a subsequent verification protocol with the use of \(\varepsilon\)-universal hash functions, which allows verifying the identity between the keys with a certain probability.
94A60 Cryptography
81P94 Quantum cryptography (quantum-theoretic aspects)
Full Text: DOI
[1] B. Schneier, Applied Cryptography (Wiley, New York, 1996). · Zbl 0853.94001
[2] Rivest, R. L.; Shamir, A.; Adleman, L., A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21, 120-126, (1978) · Zbl 0368.94005
[3] Diffie, W.; Hellman, M. E., New directions in cryptography, IEEE Trans. Inform. Theor., 22, 644-654, (1976) · Zbl 0435.94018
[4] Shor, P. W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26, 1484-1509, (1997) · Zbl 1005.11065
[5] Vernam, G. S., Cipher printing telegraph systems for secret wire and radio telegraphic communications, J. Am. Inst. Electr. Eng., 45, 295-301, (1926)
[6] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423, (1948) · Zbl 1154.94303
[7] Kotel’nikov, V. A.; Molotkov, S. N., Quantum cryptography and V. A. Kotel’nikov’s one-time key and sampling theorems, Phys. Usp., 49, 750, (2006)
[8] Wegman, M. N.; Carter, J. L., New hash functions and their use in authentication and set equality, J. Comput. Syst. Sci., 22, 265-279, (1981) · Zbl 0461.68074
[9] Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H., Quantum cryptography, Rev. Mod. Phys., 74, 145, (2002) · Zbl 1371.81006
[10] Diamanti, E.; Lo, H.-K.; Yuan, Z., Practical challenges in quantum key distribution, Quant. Inf., 2, 16025, (2016)
[11] Kiktenko, E. O.; Trushechkin, A. S.; Kurochkin, Y. V.; Fedorov, A. K., Post-processing procedure for industrial quantum key distribution systems, J. Phys.: Conf. Ser., 741, 012081, (2016)
[12] Kiktenko, E. O.; Trushechkin, A. S.; Lim, C. C. W.; Kurochkin, Y. V.; Fedorov, A. K., Symmetric blind information reconciliation for quantum key distribution, Phys. Rev. Appl., 8, 044017, (2017)
[13] Kiktenko, E. O.; Anufriev, M. N.; Pozhar, N. O.; Fedorov, A. K., Symmetric information reconciliation for the QKD post-processing procedure, (2016)
[14] Kiktenko, E. O.; Trushechkin, A. S.; Anufriev, M. N.; Pozhar, N. O.; Fedorov, A. K., Post-processing procedure for quantum key distribution systems, (2016)
[15] Gallager, R. G., Low density parity check codes, IRE Trans. Inf. Theory, 8, 21-28, (1962) · Zbl 0107.11802
[16] MacKay, D. J. C., Good error-correcting codes based on very sparse matrices, IEEE Trans. Inf. Theory, 45, 399-431, (1999) · Zbl 0946.94030
[17] Martínez-Mateo, J.; Elkouss, D.; Martin, V., Improved construction of irregular progressive edge-growth tanner graphs, IEEE Comm. Lett., 14, 1155-1157, (2010)
[18] D. Elkouss, A. Leverrier, R. Alleaume, and J. J. Boutros, “Efficient reconciliation protocol for discretevariable quantum key distribution,” in Proceedings of the IEEE International Symposiumon Information Theory, 2009, pp. 1879-1883.
[19] Elkouss, D.; Martínez-Mateo, J.; Martin, V., Untainted puncturing for irregular low-density parity-check codes, IEEE Wireless Comm. Lett., 1, 585-588, (2012)
[20] Krovetz, T.; Rogaway, P., Fast universal hashing with small keys and no preprocessing: the PolyR construction, Lect. Notes Comput. Sci., 2015, 73-89, (2001) · Zbl 1037.94543
[21] Walenta, N.; Burg, A.; Caselunghe, D.; Constantin, J.; Gisin, N.; Guinnard, O.; Houlmann, R.; Junod, P.; Korzh, B.; Kulesza, N.; Legré, M.; Lim, C. C. W.; Lunghi, T.; Monat, L.; Portmann, C.; Soucarros, M.; Trinkler, P.; Trolliet, G.; Vannel, F.; Zbinden, H., A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing, New J. Phys., 16, 013047, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.