×

zbMATH — the first resource for mathematics

Improving the 3D finite-discrete element method and its application in the simulation of wheel-sand interactions. (English) Zbl 1404.76087

MSC:
76D25 Wakes and jets
76M10 Finite element methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
Software:
DEMPack; LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agertz, O.; Moore, B.; Stadel, J.; Potter, D.; Miniati, F.; Read, J., Fundamental differences between SPH and grid methods, Mon. Not. Roy. Astron. Soc., 380, 963-978, (2007) · Zbl 1218.76036
[2] Ai, J.; Chen, J. F.; Rotter, J. M.; Ooi, J. Y., Assessment of rolling resistance models in discrete element simulations, Powder Technol., 206, 269-282, (2011)
[3] Balevičius, R.; Džiugys, A.; Kačianauskas, R., Discrete element method and its application to the analysis of penetration into granular media, J. Mater. Civil Eng., 1, 3-14, (2004)
[4] Belytschko, T.; Xiao, S., Stability analysis of particle methods with corrected derivatives, Comput. Math. Appl., 43, 329-350, (2002) · Zbl 1073.76619
[5] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P., A unified stability analysis of meshless particle methods, Int. J. Numer. Methods Eng., 48, 1359-1400, (2000) · Zbl 0972.74078
[6] Benson, D. J.; Hallquist, J. O., A single surface contact algorithm for the post-buckling analysis of shell structures, Comput. Methods Appl. Mech. Eng., 78, 141-163, (1990) · Zbl 0708.73079
[7] Bonet, J.; Kulasegaram, S., Remarks on tension instability of eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods, Int. J. Numer. Methods Eng., 52, 1203-1220, (2001) · Zbl 1112.74562
[8] Cheng, Y. P.; Minh, N. H., DEM investigation of particle size distribution effect on direct shear behaviour of granular agglomerates, P&G \(2 0 0 9\): Proc. \(6\)th Int. Conf. Micromechanics of Granular Media, 401-404, (2009), AIP Publishing, NY
[9] Cueto, O. G.; Coronel, C. E. I.; Morfa, C. A. R.; Sosa, U. G.; Gómez, H. L. H.; Calderón, U. G., Three dimensional finite element model of soil compaction caused by agricultural tire traffic, Comput. Electron. Agric., 99, 146-152, (2013)
[10] Cui, L.; O’Sullivan, C., Analysis of a triangulation based approach for specimen generation for discrete element simulations, Granul. Matter., 5, 135-145, (2003) · Zbl 1049.74526
[11] Cundall, P. A., A computer model for simulating progressive large scale movements in blocky rock systems, Proc. Int. Symp. Rock Fracture (ISRM), 129-136, (1971), Nancy
[12] Džiugys, A.; Peters, B., An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers, Granul Matter., 3, 231-236, (2001)
[13] Dang, H. K.; Meguid, M. A., An efficient finite-discrete element method for quasi-static nonlinear soil-structure interaction problems, Int. J. Numer. Anal. Methods Geomech., 37, 130-149, (2013)
[14] Dury, C. M.; Ristow, G. H., Radial segregation in a two-dimensional rotating drum, J. Phys. I, 7, 737-745, (1997)
[15] El-Gindy, M.; Lescoe, R.; Öijer, F.; Johansson, I.; Trivedi, M., Soil modeling using FEA and SPH techniques for a tire-soil interaction, ASME \(2 0 1 1\) Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf.: American Society of Mechanical Engineers, 793-802, (2011)
[16] Evans, J. W., Random and cooperative sequential adsorption, Rev. Mod. Phys., 65, 1275-1285, (1993)
[17] Feng, C.; Li, S. H.; Onate, E.; Santasusana, M., A FEM/DEM coupled and evolved model and its application in failure simulation of geological body, DEM6 — Int. Conf. DEMs \(2 0 1 3\), 102-107, (2013)
[18] Grujicic, M.; Marvi, H.; Arakere, G.; Haque, I., A finite element analysis of pneumatic-tire/sand interactions during off-road vehicle travel, Multidiscip. Model. Mater. Struct., 6, 284-308, (2010)
[19] Häggström, O.; Meester, R., Nearest neighbor and hard sphere models in continuum percolation, Random Struct. Algor., 9, 295-315, (1996) · Zbl 0866.60088
[20] Hallquist, J. O., LS-DYNA Theoretical Manual, (1998), Livermore Software Technology Corporation, Livermore
[21] Hambleton, J. P.; Drescher, A., Modeling wheel-induced rutting in soils: indentation, J. Terramech., 45, 201-211, (2008)
[22] Hambleton, J. P.; Drescher, A., Modeling wheel-induced rutting in soils: rolling, J. Terramech., 46, 35-47, (2009)
[23] Han, K.; Feng, Y. T.; Owen, D. R. J., Sphere packing with a geometric based compression algorithm, Powder Technol., 155, 33-41, (2005)
[24] Han, K.; Peric, D.; Crook, A. J. L.; Owen, D. R. J., A combined finite/discrete element simulation of shot peening processes-part I: studies on 2D interaction laws, Eng. Comput., 17, 593-620, (2000) · Zbl 1112.74515
[25] Hernquist, L., Some cautionary remarks about smoothed particle hydrodynamics, Astrophys. J., 404, 717-722, (1993)
[26] Horner, D. A.; Peters, J. F.; Carrillo, A., Large scale discrete element modeling of vehicle-soil interaction, J. Eng. Mech., 127, 1027-1032, (2001)
[27] Hu, G. M., Analysis and Simulation of Granular System by Discrete Element Method Using EDEM, (2010), Wuhan University of Technology Press, China, Wuhan
[28] Itasca [1998] PFC2D 2.00 particule flow code in two dimensions. Minneapolis, MN.
[29] Jiang, M. J.; Konrad, J. M.; Leroueil, S., An efficient technique for generating homogeneous specimens for DEM studies, Comput. Geotech., 30, 579-597, (2003)
[30] Jiang, M. J.; Yu, H. S.; Harris, D., A novel discrete model for granular material incorporating rolling resistance, Comput. Geotech., 32, 340-357, (2005)
[31] Kawase, Y.; Nakashima, H.; Oida, A., An indoor traction measurement system for agricultural tires, J. Terramech., 43, 317-323, (2006)
[32] Khot, L. R.; Salokhe, V. M.; Jayasuriya, H. P. W.; Nakashima, H., Experiment validation of distinct element simulation for dynamic wheel-soil interaction, J. Terramech., 44, 429-437, (2007)
[33] Knuth, M. A.; Johnson, J.; Hopkins, M.; Sullivan, R.; Moore, J., Discrete element modeling of a Mars exploration rover wheel in granular material, J. Terramech., 49, 27-36, (2012)
[34] Kobayashi, T.; Fujiwara, Y.; Yamakawa, J.; Yasufuku, N.; Omine, K., Mobility performance of a rigid wheel in low gravity environments, J. Terramech., 47, 261-274, (2010)
[35] Kuhn, M. R.; Bagi, K., Contact rolling and deformation in granular media, Int. J. Solids Struct., 41, 5793-5820, (2004) · Zbl 1112.74363
[36] Kurjenluoma, J.; Alakukku, L.; Ahokas, J., Rolling resistance and rut formation by implement tyres on tilled Clay soil, J. Terramech., 46, 267-275, (2009)
[37] Lescoe, R.; El-Gindy, M.; Koudela, K.; Öijer, F.; Trivedi, M.; Johansson, I., Tire-soil modeling using finite element analysis and smooth particle hydrodynamics techniques, ASME \(2 0 1 0\) IDETC: American Society of Mechanical Engineers, 3-18, (2010)
[38] Li, H.; Schindler, C., Analysis of soil compaction and tire mobility with finite element method, Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn., 227, 275-291, (2013)
[39] Li, W.; Huang, Y.; Cui, Y.; Dong, S.; Wang, J., Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion, J. Terramech., 47, 161-172, (2010)
[40] Lin, X.; Ng, T. T., A three-dimensional discrete element model using arrays of ellipsoids, Geotechnique., 47, 319-329, (1997)
[41] Mendes, R. B.; Alves, J. L. D.; Silva, C. E., Simulation of torpedo pile launching by coupled discrete and finite element analysis, Proc. XXVII Iberian Latin American Congr. Computational Methods in Engineering (XXVII CILAMCE), 1-19, (2006)
[42] Munjiza, A.; Knight, E.; Rougier, E., Computational Mechanics of Discontinua, (2012), Wiley, New York
[43] Nakashima, H.; Oida, A., Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method, J. Terramech., 41, 127-137, (2004)
[44] Nakashima, H.; Fujii, H.; Oida, A.; Momozu, M.; Kanamord, H.; Aoki, S., Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain, J. Terramech., 47, 307-321, (2010)
[45] Nakashima, H.; Takatsu, Y.; Shinone, H., Analysis of tire tractive performance on deformable terrain by finite element-discrete element method, J. Comput. Sci. Techn., 4, 423-434, (2008)
[46] Nakashima, H.; Takatsu, Y.; Shinone, H., FE-DEM analysis of the effect of tread pattern on the tractive performance of tires operating on sand, J. Mech. Transport Log., 2, 55-65, (2009)
[47] Oñate, E.; Rojek, J., Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Comput. Methods Appl. Mech. Eng., 193, 3087-3128, (2004) · Zbl 1079.74646
[48] Okayasu, T.; Fukuda, T.; Tsuchiya, K.; Fukami, K.; Inoue, E.; Hirai, Y., Development of soil tillage simulator using FEM-DEM quasi-coupling method, Proc. Int. Symp. Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB), 1-6, (2014)
[49] Shinone, H.; Nakashima, H.; Takatsu, Y., Experimental analysis of tread pattern effects on tire tractive performance on sand using an indoor traction measurement system with forced-slip mechanism, EAEF, 3, 61-66, (2010)
[50] Sigalotti, L. D. G.; López, H., Adaptive kernel estimation and SPH tensile instability, Comput. Math. Appl., 55, 23-50, (2008) · Zbl 1421.76181
[51] Smith, W.; Peng, H., Modeling of wheel-soil interaction over rough terrain using the discrete element method, J. Terramech., 50, 277-287, (2013)
[52] Stoyan, D., Random sets: models and statistics, Int. Stat. Rev., 66, 1-27, (1998) · Zbl 0906.60006
[53] Taghavifar, H.; Mardani, A., Investigating the effect of velocity, inflation pressure, and vertical load on rolling resistance of a radial ply tire, J. Terramech., 50, 99-106, (2012)
[54] Wakui, F.; Terumichi, Y., Numerical simulation of tire behavior on soft ground, J. Syst. Des. Dyn., 5, 486-500, (2011)
[55] Wang, L.; Ge, W.; Li, J., A new wall boundary condition in particle methods, Comput. Phys. Commun., 174, 386-390, (2006) · Zbl 1196.76071
[56] Wang, S. P.; Nakamachi, E., The inside-outside contact search algorithm for finite element analysis, Int. J. Numer. Methods Eng., 40, 3665-3685, (1997) · Zbl 0907.73071
[57] Williams, J. R.; Perkins, E.; Cook, B., A contact algorithm for partitioning \(N\) arbitrary sized objects, Eng. Comput., 21, 235-248, (2004) · Zbl 1062.74671
[58] Xia, K., Finite element modeling of tire/terrain interaction: application to predicting soil compaction and tire mobility, J. Terramech., 48, 113-123, (2011)
[59] Xia, K.; Yang, Y. M., Three-dimensional finite element modeling of tire/ground interaction, Int. J. Numer. Anal. Methods Geomech., 36, 498-516, (2012)
[60] Zang, M. Y.; Gao, W.; Lei, Z., A contact algorithm for 3D discrete and finite element contact problems based on penalty function method, Comput. Mech., 48, 541-50, (2011) · Zbl 1384.74048
[61] Zang, M. Y.; Lei, Z.; Wang, S. F., Investigation of impact fracture behavior of automobile laminated Glass by 3D discrete element method, Comput. Mech., 41, 73-83, (2007) · Zbl 1162.74444
[62] Zhang, R.; Liu, F.; Zeng, G.; Li, J., Research on dynamic simulation system of interactions between irregular rigid wheel and lunar soil simulant, National Conf. Computational Mechanics of Granular Materials \(2 0 1 2\) (CMGM-2012), 438-444, (2012), Zhangjiajie, China
[63] Zhuang, J. D., Computational Vehicle Terramechanics, (2002), Chinese Machinery Industry Press (CMP), China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.