×

A multiscale agent-based model for the investigation of E. coli K12 metabolic response during biofilm formation. (English) Zbl 1401.92079

Summary: Bacterial biofilm formation is an organized collective response to biochemical cues that enables bacterial colonies to persist and withstand environmental insults. We developed a multiscale agent-based model that characterizes the intracellular, extracellular, and cellular scale interactions that modulate Escherichia coli MG1655 biofilm formation. Each bacterium’s intracellular response and cellular state were represented as an outcome of interactions with the environment and neighboring bacteria. In the intracellular model, environment-driven gene expression and metabolism were captured using statistical regression and Michaelis-Menten kinetics, respectively. In the cellular model, growth, death, and type IV pili- and flagella-dependent movement were based on the bacteria’s intracellular state. We implemented the extracellular model as a three-dimensional diffusion model used to describe glucose, oxygen, and autoinducer 2 gradients within the biofilm and bulk fluid. We validated the model by comparing simulation results to empirical quantitative biofilm profiles, gene expression, and metabolic concentrations. Using the model, we characterized and compared the temporal metabolic and gene expression profiles of sessile versus planktonic bacterial populations during biofilm formation and investigated correlations between gene expression and biofilm-associated metabolites and cellular scale phenotypes. Based on our in silico studies, planktonic bacteria had higher metabolite concentrations in the glycolysis and citric acid cycle pathways, with higher gene expression levels in flagella and lipopolysaccharide-associated genes. Conversely, sessile bacteria had higher metabolite concentrations in the autoinducer 2 pathway, with type IV pili, autoinducer 2 export, and cellular respiration genes upregulated in comparison with planktonic bacteria. Having demonstrated results consistent with in vitro static culture biofilm systems, our model enables examination of molecular phenomena within biofilms that are experimentally inaccessible and provides a framework for future exploration of how hypothesized molecular mechanisms impact bulk community behavior.

MSC:

92C40 Biochemistry, molecular biology
92C17 Cell movement (chemotaxis, etc.)
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C42 Systems biology, networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramson, J.; Riistama, S.; Larsson, G.; Jasaitis, A.; Svensson-Ek, M.; Laakkonen, L.; Puustinen, A.; Iwata, S.; Wikström , M., The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site, Nat Struct Mol Biol, 7, 910-917, (2000)
[2] Adair, CG; Gorman, SP; Feron, BM; Byers, LM; Jones, DS; Goldsmith, CE; Moore, JE; Kerr, JR; Curran, MD; Hogg, G.; etal., Implications of endotracheal tube biofilm for ventilator-associated pneumonia, Intensive Care Med, 25, 1072-1076, (1999)
[3] Adams B, Ebeida M, Eldred M, Jakeman J, Swiler L, Bohnhoff W, Dalbey K (2013) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Technical report Sandia National Laboratories
[4] Agladze, K.; Wang, X.; Romeo, T., Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA, J Bacteriol, 187, 8237-8246, (2005)
[5] Alpkvist, E.; Picioreanu, C.; Loosdrecht, MCM; Heyden, A., Three-dimensional biofilm model with individual cells and continuum EPS matrix, Biotechnol Bioeng, 94, 961-979, (2006)
[6] Andersen, KB; Meyenburg, K., Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli, J Biol Chem, 252, 4151-4156, (1977)
[7] Apri, M.; Gee, M.; Molenaar, J., Complexity reduction preserving dynamical behavior of biochemical networks, J Theor Biol, 304, 16-26, (2012) · Zbl 1397.92248
[8] Baker, JS; Dudley, LY, Biofouling in membrane systems: a review, Desalination, 118, 81-89, (1998)
[9] Barberis, M.; Klipp, E.; Vanoni, M.; Alberghina, L., Cell size at S phase initiation: an emergent property of the G1/S network, PLoS Comput Biol, 3, e64, (2007)
[10] Barrett, T.; Troup, DB; Wilhite, SE; Ledoux, P.; Evangelista, C.; Kim, IF; Tomashevsky, M.; Marshall, KA; Phillippy, KH; Sherman, PM; etal., NCBI GEO: archive for functional genomics data sets-10 years on, Nucleic Acids Res, 39, d1005-d1010, (2011)
[11] Barrios, AFG; Zuo, R.; Hashimoto, Y.; Yang, L.; Bentley, WE; Wood, TK, Autoinducer 2 controls biofilm Formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022), J Bacteriol, 188, 305-316, (2006)
[12] Becker, SA; Feist, AM; Mo, ML; Hannum, G.; Palsson, BØ; Herrgard, MJ, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox, Nat Protoc, 2, 727-738, (2007)
[13] Beloin, C.; Roux, A.; Ghigo, J-M, Escherichia coli biofilms, Curr Top Microbiol Immunol, 322, 249-289, (2008)
[14] Bennett, BD; Kimball, EH; Gao, M.; Osterhout, R.; Dien, SJ; Rabinowitz, JD, Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nat Chem Biol, 5, 593-599, (2009)
[15] Biggs, MB; Papin, JA, Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation, PloS One, 8, e78011, (2013)
[16] Booth, SC; Workentine, ML; Wen, J.; Shaykhutdinov, R.; Vogel, HJ; Ceri, H.; Turner, RJ; Weljie, AM, Differences in metabolism between the biofilm and planktonic response to metal stress, J Proteome Res, 10, 3190-3199, (2011)
[17] Brown, MR; Allison, DG; Gilbert, P., Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?, J Antimicrob Chemother, 22, 777-780, (1988)
[18] Busch, A.; Waksman, G., Chaperone-usher pathways: diversity and pilus assembly mechanism, Philos Trans R Soc Lond B Biol Sci, 367, 1112-1122, (2012)
[19] Busch, A.; Phan, G.; Waksman, G., Molecular mechanism of bacterial type 1 and P pili assembly, Philos Trans R Soc Lond Math Phys Eng Sci, 373, 20130153, (2015)
[20] Chang, A.; Schomburg, I.; Placzek, S.; Jeske, L.; Ulbrich, M.; Xiao, M.; Sensen, CW; Schomburg, D., BRENDA in 2015: exciting developments in its 25th year of existence, Nucleic Acids Res, 43, d439-d446, (2015)
[21] Chopp, DL; Kirisits, MJ; Moran, B.; Parsek, MR, A mathematical model of quorum sensing in a growing bacterial biofilm, J Ind Microbiol Biotechnol, 29, 339-346, (2002)
[22] Chu, W.; Zere, TR; Weber, MM; Wood, TK; Whiteley, M.; Hidalgo-Romano, B.; Valenzuela, E.; McLean, RJ, Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling, Appl Environ Microbiol, 78, 411-419, (2012)
[23] Clark, DP, The fermentation pathways of Escherichia coli, FEMS Microbiol Rev, 5, 223-234, (1989)
[24] Clegg, S.; Hughes, KT, FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium, J Bacteriol, 184, 1209-1213, (2002)
[25] Conrad, JC, Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation, Res Microbiol, 163, 619-629, (2012)
[26] Conrad, JC; Gibiansky, ML; Jin, F.; Gordon, VD; Motto, DA; Mathewson, MA; Stopka, WG; Zelasko, DC; Shrout, JD; Wong, GCL, Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa, Biophys J, 100, 1608-1616, (2011)
[27] Costerton, JW; Stewart, PS; Greenberg, EP, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318-1322, (1999)
[28] Costerton, JW; Montanaro, L.; Arciola, CR, Biofilm in implant infections: its production and regulation, Int J Artif Organs, 28, 1062-1068, (2005)
[29] Danese, PN; Pratt, LA; Kolter, R., Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture, J Bacteriol, 182, 3593-3596, (2000)
[30] Danø, S.; Madsen, MF; Schmidt, H.; Cedersund, G., Reduction of a biochemical model with preservation of its basic dynamic properties, Febs J, 273, 4862-4877, (2006)
[31] Davies, DG; Parsek, MR; Pearson, JP; Iglewski, BH; Costerton, Jt; Greenberg, EP, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295-298, (1998)
[32] Kievit, TR; Gillis, R.; Marx, S.; Brown, C.; Iglewski, BH, Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns, Appl Environ Microbiol, 67, 1865-1873, (2001)
[33] DeLisa, MP; Wu, C-F; Wang, L.; Valdes, JJ; Bentley, WE, DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli, J Bacteriol, 183, 5239-5247, (2001)
[34] Doke J (2005) Grabit. m, The MathWorks MatLab Central Website, (March 17, 2005)
[35] Domka, J.; Lee, J.; Bansal, T.; Wood, TK, Temporal gene-expression in Escherichia coli K-12 biofilms, Environ Microbiol, 9, 332-346, (2007)
[36] Donlan, RM, Biofilms and device-associated infections, Emerg Infect Dis, 7, 277, (2001)
[37] Duddu, R.; Chopp, DL; Moran, B., A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment, Biotechnol Bioeng, 103, 92-104, (2009)
[38] Esser, DS; Leveau, JH; Meyer, KM, Modeling microbial growth and dynamics, Appl Microbiol Biotechnol, 99, 8831-8846, (2015)
[39] Feist, AM; Henry, CS; Reed, JL; Krummenacker, M.; Joyce, AR; Karp, PD; Broadbelt, LJ; Hatzimanikatis, V.; Palsson, BØ, A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Mol Syst Biol, 3, 121, (2007)
[40] Fischer, E.; Zamboni, N.; Sauer, U., High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13 C constraints, Anal Biochem, 325, 308-316, (2004)
[41] Fitzgerald, DM; Bonocora, RP; Wade, JT, Comprehensive mapping of the Escherichia coli flagellar regulatory network, PLoS Genet, 10, e1004649, (2014)
[42] Flemming, H-C, Biofouling in water systems-cases, causes and countermeasures, Appl Microbiol Biotechnol, 59, 629-640, (2002)
[43] Flemming, H-C; Wingender, J., The biofilm matrix, Nat Rev Microbiol, 8, 623-633, (2010)
[44] Fukuoka, S.; Kamishima, H.; Sode, K.; Karube, I., Extracellular lipopolysaccharide production by Erwinia carotovora, J Ferment Bioeng, 68, 320-324, (1989)
[45] Funahashi, A.; Morohashi, M.; Kitano, H.; Tanimura, N., Cell designer: a process diagram editor for gene-regulatory and biochemical networks, Biosilico, 1, 159-162, (2003)
[46] Funahashi, A.; Matsuoka, Y.; Jouraku, A.; Morohashi, M.; Kikuchi, N.; Kitano, H., Cell designer 3.5: a versatile modeling tool for biochemical networks, IEEE Proc, 96, 1254-1265, (2008)
[47] Fuqua, C.; Parsek, MR; Greenberg, EP, Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing, Annu Rev Genet, 35, 439-468, (2001)
[48] Fux, CA; Costerton, JW; Stewart, PS; Stoodley, P., Survival strategies of infectious biofilms, Trends Microbiol, 13, 34-40, (2005)
[49] Gally, DL; Rucker, TJ; Blomfield, IC, The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12, J Bacteriol, 176, 5665-5672, (1994)
[50] Genevaux, P.; Bauda, P.; DuBow, MS; Oudega, B., Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion, Arch Microbiol, 172, 1-8, (1999)
[51] Gillis, RJ; Iglewski, BH, Azithromycin retards Pseudomonas aeruginosa biofilm formation, J Clin Microbiol, 42, 5842-5845, (2004)
[52] Gomez, JA; Höffner, K.; Barton, PI, DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis, BMC Bioinform, 15, 409, (2014)
[53] Gorochowski, TE; Matyjaszkiewicz, A.; Todd, T.; Oak, N.; Kowalska, K.; Reid, S.; Tsaneva-Atanasova, KT; Savery, NJ; Grierson, CS; Bernardo, M., BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology, PloS One, 7, e42790, (2012)
[54] Guide, MU, The mathworks, Inc Natick, 5, 333, (1998)
[55] Guyer, JE; Wheeler, D.; Warren, JA, FiPy: partial differential equations with python, Comput Sci Eng, 11, 6, (2009)
[56] Hall-Stoodley, L.; Costerton, JW; Stoodley, P., Bacterial biofilms: from the natural environment to infectious diseases, Nat Rev Microbiol, 2, 95-108, (2004)
[57] Hammer, BK; Bassler, BL, Quorum sensing controls biofilm formation in vibrio cholerae, Mol Microbiol, 50, 101-104, (2003)
[58] Hardie, KR; Heurlier, K., Establishing bacterial communities by’word of mouth’: LuxS and autoinducer 2 in biofilm development, Nat Rev Microbiol, 6, 635-643, (2008)
[59] Herzberg, M.; Kaye, IK; Peti, W.; Wood, TK, YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport, J Bacteriol, 188, 587-598, (2006)
[60] Heydorn, A.; Nielsen, AT; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersbøll, M.; Molin, S., Quantification of biofilm structures by the novel computer program COMSTAT, Microbiology, 146, 2395-2407, (2000)
[61] Hooshangi, S.; Bentley, WE, LsrR quorum sensing “switch” is revealed by a bottom-up approach, PLoS Comput Biol, 7, e1002172, (2011)
[62] Ingledew, WJ; Poole, RK, The respiratory chains of Escherichia coli, Microbiol Rev, 48, 222, (1984)
[63] Itoh, Y.; Rice, JD; Goller, C.; Pannuri, A.; Taylor, J.; Meisner, J.; Beveridge, TJ; Preston, JF; Romeo, T., Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-\(\beta \)-1, 6-N-acetyl-\(D\)-glucosamine, J Bacteriol, 190, 3670-3680, (2008)
[64] Izano, EA; Amarante, MA; Kher, WB; Kaplan, JB, Differential roles of Poly-\(N\)-Acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms, Appl Environ Microbiol, 74, 470-476, (2008)
[65] Jayaraman, A.; Wood, TK, Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease, Annu Rev Biomed Eng, 10, 145-167, (2008)
[66] Kadir, TA; Mannan, AA; Kierzek, AM; McFadden, J.; Shimizu, K., Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification, Microb Cell Fact, 9, 88, (2010)
[67] Kanehisa, M.; Goto, S., KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res, 28, 27-30, (2000)
[68] Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M., Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res, 42, d199-d205, (2014)
[69] Keseler, IM; Mackie, A.; Peralta-Gil, M.; Santos-Zavaleta, A.; Gama-Castro, S.; Bonavides-Martínez, C.; Fulcher, C.; Huerta, AM; Kothari, A.; Krummenacker, M.; etal., EcoCyc: fusing model organism databases with systems biology, Nucleic Acids Res, 41, d605-d612, (2013)
[70] Klapper, I.; Dockery, J., Mathematical description of microbial biofilms, SIAM Rev, 52, 221-265, (2010) · Zbl 1191.92065
[71] Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2013) Systems biology. Wiley, Hoboken
[72] Kröger, A.; Geisler, V.; Lemma, E.; Theis, F.; Lenger, R., Bacterial fumarate respiration, Arch Microbiol, 158, 311-314, (1992)
[73] Lardon, LA; Merkey, BV; Martins, S.; Dotsch, A.; Picioreanu, C.; Kreft, J-U; Smets, BF, iDynoMiCS: next-generation individual-based modelling of biofilms, Env Microbiol, 13, 2416-34, (2011)
[74] Lee, J.; Jayaraman, A.; Wood, TK, Indole is an inter-species biofilm signal mediated by SdiA, BMC Microbiol, 7, 1, (2007)
[75] Levskaya, A.; Chevalier, AA; Tabor, JJ; Simpson, ZB; Lavery, LA; Levy, M.; Davidson, EA; Scouras, A.; Ellington, AD; Marcotte, EM, Synthetic biology: engineering Escherichia coli to see light, Nature, 438, 441-442, (2005)
[76] Lobry, JR; Flandrois, JP; Carret, G.; Pave, A., Monod’s bacterial growth model revisited, Bull Math Biol, 54, 117-122, (1992) · Zbl 0733.92014
[77] Logan, BE, Exoelectrogenic bacteria that power microbial fuel cells, Nat Rev Microbiol, 7, 375-381, (2009)
[78] Mahadevan, R.; Edwards, JS; Doyle, FJ, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys J, 83, 1331-1340, (2002)
[79] Majors, PD; McLean, JS; Pinchuk, GE; Fredrickson, JK; Gorby, YA; Minard, KR; Wind, RA, NMR methods for in situ biofilm metabolism studies, J Microbiol Methods, 62, 337-344, (2005)
[80] Marino, S.; Hogue, IB; Ray, CJ; Kirschner, DE, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254, 178-196, (2008) · Zbl 1400.92013
[81] May, EE; Sershen, CL, Oxygen availability and metabolic dynamics during Mycobacterium tuberculosis latency, IEEE Trans Biomed Eng, 63, 2036-2046, (2016)
[82] Merritt, JH; Kadouri, DE; O’Toole, GA, Growing and analyzing static biofilms, Curr Protoc Microbiol, 22, 1b-1, (2005)
[83] Millard, P.; Smallbone, K.; Mendes, P., Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli, PLOS Comput Biol, 13, e1005396, (2017)
[84] Miller, MB; Bassler, BL, Quorum sensing in bacteria, Annu Rev Microbiol, 55, 165-199, (2001)
[85] Milo, R.; Jorgensen, P.; Moran, U.; Weber, G.; Springer, M., BioNumbershe database of key numbers in molecular and cell biology, Nucleic Acids Res, 38, d750753, (2009)
[86] Monds, RD; O’Toole, GA, The developmental model of microbial biofilms: ten years of a paradigm up for review, Trends Microbiol, 17, 73-87, (2009)
[87] Monon, J., The growth of bacterial cultures, Sel Pap Mol Biol Jacques Monod, 11, 139, (2012)
[88] Moreira, GC; Palmer, K.; Whiteley, M.; Sircili, MP; Trabulsi, LR; Castro, AFP; Sperandio, V., Bundle-forming pili and EspA Are involved in biofilm formation by enteropathogenic Escherichia coli, J Bacteriol, 188, 3952-3961, (2006)
[89] Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE eds (1987) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Volumes I and II. American Society for Microbiology. Washington, DC
[90] Nguyen, T.; Roddick, FA; Fan, L., Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes, 2, 804-840, (2012)
[91] Nikerel, IE; Winden, WA; Verheijen, PJT; Heijnen, JJ, Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics, Metab Eng, 11, 20-30, (2009)
[92] Okuda, S.; Freinkman, E.; Kahne, D., Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli, Science, 338, 1214-1217, (2012)
[93] Olsen, I., Biofilm-specific antibiotic tolerance and resistance, Eur J Clin Microbiol Infect Dis, 34, 877-886, (2015)
[94] O’Toole, G.; Kaplan, HB; Kolter, R., Biofilm formation as microbial development, Annu Rev Microbiol, 54, 49-79, (2000)
[95] Pabst, B.; Pitts, B.; Lauchnor, E.; Stewart, PS, Gel-Entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression, Antimicrob Agents Chemother, 60, 6294-6301, (2016)
[96] Paju, S.; Scannapieco, FA, Oral biofilms, periodontitis, and pulmonary infections, Oral Dis, 13, 508-512, (2007)
[97] Pammi, M.; Liang, R.; Hicks, J.; Mistretta, T-A; Versalovic, J., Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans, BMC Microbiol, 13, 257, (2013)
[98] Perkins, TK; Johnston, OC, A review of diffusion and dispersion in porous media, Soc Pet Eng J, 3, 70-84, (1963)
[99] Pizarro, G.; Griffeath, D.; Noguera, DR, Quantitative cellular automaton model for biofilms, J Environ Eng, 127, 782-789, (2001)
[100] Poole RK, Ingledew WJ (1987) Pathways of electrons to oxygen. Escherichia coli and Salmonella Typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, DC, 170-200
[101] Pratt, LA; Kolter, R., Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Mol Microbiol, 30, 285-293, (1998)
[102] Pruss, BM; Besemann, C.; Denton, A.; Wolfe, AJ, A complex transcription network controls the early stages of biofilm development by Escherichia coli, J Bacteriol, 188, 3731, (2006)
[103] Raetz, C.; Reynolds, CM; Trent, MS; Bishop, R., Lipid a modification systems in gram-negative bacteria, Annu Rev Biochem, 76, 295-329, (2007)
[104] Ray, J.; Kirschner, DE, Synergy between individual TNF-dependent function determines granuloma performance for controlling Mycobacterium tuberculosis infection, J Immunol, 182, 3706-3717, (2009)
[105] Reisner, A.; Haagensen, JAJ; Schembri, MA; Zechner, EL; Molin, S., Development and maturation of Escherichia coli K12 biofilms, Mol Microbiol, 48, 933-946, (2003)
[106] Römling, U.; Galperin, MY; Gomelsky, M., Cyclic di-GMP: the first 25 years of a universal bacterial second messenger, Microbiol Mol Biol Rev, 77, 1-52, (2013)
[107] Salim, T.; Sershen, CL; May, EE, Investigating the role of TNF-\(\alpha \) and IFN-\(\gamma \) Activation on the dynamics of iNOS gene expression in LPS stimulated macrophages, PloS One, 11, e0153289, (2016)
[108] Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Max-Planck Institute of Chemistry, Air Chemistry Department Mainz, Germany
[109] Sauro HM (2012) Enzyme kinetics for systems biology. Ambrosius Publishing and Future Skill Software
[110] Schellenberger, J.; Que, R.; Fleming, RM; Thiele, I.; Orth, JD; Feist, AM; Zielinski, DC; Bordbar, A.; Lewis, NE; Rahmanian, S.; etal., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0, Nat Protoc, 6, 1290-1307, (2011)
[111] Schembri, MA; Kjærgaard, K.; Klemm, P., Global gene expression in Escherichia coli biofilms, Mol Microbiol, 48, 253-267, (2003)
[112] Schmidt, H.; Madsen, MF; Danø, S.; Cedersund, G., Complexity reduction of biochemical rate expressions, Bioinformatics, 24, 848-854, (2008)
[113] Schultz, MP, Effects of coating roughness and biofouling on ship resistance and powering, Biofouling, 23, 331-341, (2007)
[114] Schultz, MP; Swain, GW, The influence of biofilms on skin friction drag, Biofouling, 15, 129-139, (2000)
[115] Schultz, MP; Bendick, JA; Holm, ER; Hertel, WM, Economic impact of biofouling on a naval surface ship, Biofouling, 27, 87-98, (2011)
[116] Segovia-Juarez, JL; Ganguli, S.; Kirschner, DE, Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, J Theor Biol, 231, 357-376, (2004)
[117] Senior, AE, ATP synthesis by oxidative phosphorylation, Physiol Rev, 68, 177-231, (1988)
[118] Serra, DO; Richter, AM; Klauck, G.; Mika, F.; Hengge, R., Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm, mBio, 4, e00103-13, (2013)
[119] Sershen, CL; Plimpton, SJ; May, EE, Oxygen modulates the effectiveness of granuloma mediated host response to Mycobacterium tuberculosis: a multiscale computational biology approach, Front Cell Infect Microbiol, 6, 6, (2016)
[120] Sheppard M (2012) AllFitDist [Fit all valid parametric probability distributions to data]
[121] Singh, VK; Ghosh, I., Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets, Theor Biol Med Model, 3, 27-27, (2006)
[122] Singh, PK; Schaefer, AL; Parsek, MR; Moninger, TO; Welsh, MJ; Greenberg, EP, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms, Nature., 407, 762-764, (2000)
[123] Singh, R.; Paul, D.; Jain, RK, Biofilms: implications in bioremediation, Trends Microbiol, 14, 389-397, (2006)
[124] Socransky, SS; Haffajee, AD, Dental biofilms: difficult therapeutic targets, Periodontol 2000, 28, 12-55, (2002)
[125] Spoering, AL; Lewis, K., Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials, J Bacteriol, 183, 6746-6751, (2001)
[126] Stewart, PS, Mechanisms of antibiotic resistance in bacterial biofilms, Int J Med Microbiol, 292, 107-113, (2002)
[127] Stewart, PS, Diffusion in Biofilms, J Bacteriol, 185, 1485, (2003)
[128] Stoodley, P.; Sauer, K.; Davies, DG; Costerton, JW, Biofilms as complex differentiated communities, Annu Rev Microbiol, 56, 187-209, (2002)
[129] Sun, X.; Medvedovic, M., Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks, IET Syst Biol, 10, 10-16, (2016)
[130] Trautner, BW; Darouiche, RO, Role of biofilm in catheter-associated urinary tract infection, Am J Infect Control, 32, 177-183, (2004)
[131] Unden, G.; Bongaerts, J., Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors, Biochim Biophys Acta BBA-Bioenerg, 1320, 217-234, (1997)
[132] Houdt, R.; Michiels, CW, Role of bacterial cell surface structures in Escherichia coli biofilm formation, Res Microbiol, 156, 626-633, (2005)
[133] Vilain, S.; Pretorius, JM; Theron, J.; Brözel, VS, DNA as an adhesin: bacillus cereus requires extracellular DNA to form biofilms, Appl Environ Microbiol, 75, 2861-2868, (2009)
[134] Walters, MC; Roe, F.; Bugnicourt, A.; Franklin, MJ; Stewart, PS, Contributions of Antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin, Antimicrob Agents Chemother, 47, 317-323, (2003)
[135] Wang, X.; Preston, JF; Romeo, T., The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation, J Bacteriol, 186, 2724-2734, (2004)
[136] Wang, X.; Dubey, AK; Suzuki, K.; Baker, CS; Babitzke, P.; Romeo, T., CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli, Mol Microbiol, 56, 1648-1663, (2005)
[137] Waters, CM; Bassler, BL, Quorum sensing: cell-to-cell communication in bacteria, Annu Rev Cell Dev Biol, 21, 319-346, (2005)
[138] Watnick, P.; Kolter, R., Biofilm, city of microbes, J Bacteriol, 182, 2675-2679, (2000)
[139] Whitchurch, CB; Tolker-Nielsen, T.; Ragas, PC; Mattick, JS, Extracellular DNA required for bacterial biofilm formation, Science., 295, 1487-1487, (2002)
[140] Wood, TK, Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling, Environ Microbiol, 11, 1-15, (2009)
[141] Wood, TK; Barrios, AFG; Herzberg, M.; Lee, J., Motility influences biofilm architecture in Escherichia coli, Appl Microbiol Biotechnol, 72, 361-367, (2006)
[142] Wood, TK; Bentley, WE; Kjelleberg, S. (ed.); Givskov, M. (ed.), Signaling in Escherichia coli biofilms, (2007), Uk
[143] Xavier, KB; Bassler, BL, LuxS quorum sensing: more than just a numbers game, Curr Opin Microbiol, 6, 191-197, (2003)
[144] Xiong, Y.; Liu, Y., Involvement of ATP and autoinducer-2 in aerobic granulation, Biotechnol Bioeng, 105, 51-58, (2010)
[145] Yarwood, JM; Bartels, DJ; Volper, EM; Greenberg, EP, Quorum sensing in Staphylococcus aureus biofilms, J Bacteriol, 186, 1838-1850, (2004)
[146] Zhang, B.; Powers, R., Analysis of bacterial biofilms using NMR-based metabolomics, Future Med Chem, 4, 1273-1306, (2012)
[147] Zhu, J.; Pei, D., A LuxP-based fluorescent sensor for bacterial autoinducer II, ACS Chem Biol, 3, 110-119, (2008)
[148] Zhu, Z.; Wang, H.; Shang, Q.; Jiang, Y.; Cao, Y.; Chai, Y., Time course analysis of Candida albicans metabolites during biofilm development, J Proteome Res, 12, 2375-2385, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.