×

Improved quantum circuit modelling based on Heisenberg representation. (English) Zbl 1402.81091

Summary: Heisenberg model allows a more compact representation of certain quantum states and enables efficient modelling of stabilizer gates operation and single-qubit measurement in computational basis on classical computers. Since generic quantum circuit modelling appears intractable on classical computers, the Heisenberg representation that makes the modelling process at least practical for certain circuits is crucial. This paper proposes efficient algorithms to facilitate accurate global phase maintenance for both stabilizer and non-stabilizer gates application that play a vital role in the stabilizer frames data structure, which is based on the Heisenberg representation. The proposed algorithms are critical as maintaining global phase involves compute-intensive operations that are necessary for the modelling of each quantum gate. In addition, the proposed work overcomes the limitations of prior work where the phase factors due to non-stabilizer gates application was not taken into consideration. The verification of the proposed algorithms is made against the golden reference model that is constructed based on the conventional state vector approach.

MSC:

81P68 Quantum computation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aaronson, S; Gottesman, D, Improved simulation of stabilizer circuits, Phys. Rev. A, 70, 052,328, (2004)
[2] Abubakar, M.Y., Jung, L.T., Zakaria, M.N., Younesy, A., Abdel-Atyz, A.H.: New universal gate library for synthesizing reversible logic circuit using genetic programming. In: International Conference on Computer and Information Sciences (ICCOINS), pp. 316-321. IEEE (2016)
[3] Abubakar, MY; Jung, LT; Zakaria, N; Younes, A; Abdel-Aty, AH, Reversible circuit synthesis by genetic programming using dynamic gate libraries, Quantum Inf. Process., 16, 160, (2017) · Zbl 1373.81131
[4] Barenco, A; Deutsch, D; Ekert, A; Jozsa, R, Conditional quantum dynamics and logic gates, Phys. Rev. Lett., 74, 4083, (1995)
[5] Bennink, RS; Ferragut, EM; Humble, TS; Laska, JA; Nutaro, JJ; Pleszkoch, MG; Pooser, RC, Unbiased simulation of near-Clifford quantum circuits, Phys. Rev. A, 95, 062,337, (2017)
[6] Bravyi, S; Gosset, D, Improved classical simulation of quantum circuits dominated by Clifford gates, Phys. Rev. Lett., 116, 250,501, (2016)
[7] García, HJ; Markov, IL, Simulation of quantum circuits via stabilizer frames, IEEE Trans. Comput., 64, 2323-2336, (2015) · Zbl 1360.68464
[8] García-Ramírez, H.J.: Hybrid techniques for simulating quantum circuits using the Heisenberg representation. Ph.D. thesis, The University of Michigan (2014)
[9] Gershenfeld, NA; Chuang, IL, Bulk spin-resonance quantum computation, Science, 275, 350-356, (1997) · Zbl 1226.81047
[10] Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997)
[11] Gottesman, D.: The Heisenberg representation of quantum computers. arXiv:quant-ph/9807006 (1998)
[12] Homid, A; Abdel-Aty, A; Abdel-Aty, M; Badawi, A; Obada, AS, Efficient realization of quantum search algorithm using quantum annealing processor with dissipation, JOSA B, 32, 2025-2033, (2015)
[13] Johansson, N; Larsson, JÅ, Efficient classical simulation of the Deutsch-jozsa and Simons algorithms, Quantum Inf. Process., 16, 233, (2017) · Zbl 1387.81160
[14] Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors. ICCD 2004, pp. 310-315. IEEE (2004)
[15] Khalil-Hani, M., Lee, Y.H., Marsono, M.N.: An accurate FPGA-based hardware emulation on quantum fourier transform. In: Australasian Symposium on Parallel and Distributed Computing (AusPDC), vol. 1, p. a1b3 (2015)
[16] Kliuchnikov, V; Maslov, D, Optimization of Clifford circuits, Phys. Rev. A, 88, 052,307, (2013)
[17] Kliuchnikov, V; Maslov, D; Mosca, M, Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits, Phys. Rev. Lett., 110, 190,502, (2013)
[18] Knill, E; Leibfried, D; Reichle, R; Britton, J; Blakestad, R; Jost, J; Langer, C; Ozeri, R; Seidelin, S; Wineland, D, Randomized benchmarking of quantum gates, Phys. Rev. A, 77, 012,307, (2008) · Zbl 1109.81307
[19] Lee, Y.H.: QCM: Quantum circuit modelling using state vector and Heisenberg representations. https://github.com/yeehui1988/QCM (2017)
[20] Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfigurable Comput. 2016, 1-18 (2016)
[21] Messiah, A.: Quantum Mechanics. Dover Publications, New York (1999) · Zbl 0102.42602
[22] Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic, pp. 30-30. IEEE (2006)
[23] Monroe, C; Meekhof, D; King, B; Itano, W; Wineland, D, Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett., 75, 4714, (1995) · Zbl 1020.81550
[24] Mooij, J; Orlando, T; Levitov, L; Tian, L; Wal, CH; Lloyd, S, Josephson persistent-current qubit, Science, 285, 1036-1039, (1999)
[25] Muñoz-Coreas, E., Thapliyal, H.: Design of quantum circuits for galois field squaring and exponentiation. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 68-73. IEEE (2017)
[26] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010) · Zbl 1288.81001
[27] Shiou-An, W; Chin-Yung, L; Sy-Yen, K; etal., An XQDD-based verification method for quantum circuits, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 91, 584-594, (2008)
[28] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124-134. IEEE (1994)
[29] Simon, DR, On the power of quantum computation, SIAM J. Comput., 26, 1474-1483, (1997) · Zbl 0883.03024
[30] Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv:1601.07195 (2016)
[31] Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving QuIDD-based simulation. In: Quantum Circuit Simulation, pp. 133-152. Springer, Dordrecht (2009)
[32] Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008) · Zbl 1161.68020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.