×

The velocity of 1d Mott variable-range hopping with external field. (English. French summary) Zbl 1401.60182

Summary: Mott variable-range hopping is a fundamental mechanism for low-temperature electron conduction in disordered solids in the regime of Anderson localization. In a mean field approximation, it reduces to a random walk (shortly, Mott random walk) on a random marked point process with possible long-range jumps.{ }We consider here the one-dimensional Mott random walk and we add an external field (or a bias to the right). We show that the bias makes the walk transient, and investigate its linear speed. Our main results are conditions for ballisticity (positive linear speed) and for sub-ballisticity (zero linear speed), and the existence in the ballistic regime of an invariant distribution for the environment viewed from the walker, which is mutually absolutely continuous with respect to the original law of the environment. If the point process is a renewal process, the aforementioned conditions result in a sharp criterion for ballisticity. Interestingly, the speed is not always continuous as a function of the bias.

MSC:

60K37 Processes in random environments
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
60G50 Sums of independent random variables; random walks
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] S. Alili. Asymptotic behavior for random walks in random environments. J. Appl. Probab.36 (1999) 334-349. · Zbl 0946.60046 · doi:10.1239/jap/1032374457
[2] V. Ambegoakar, B. I. Halperin and J. S. Langer. Hopping conductivity in disordered systems. Phys. Rev. B4 (1971) 2612-2620.
[3] N. Berger, N. Gantert and Y. Peres. The speed of biased random walk on percolation clusters. Probab. Theory Related Fields126 (2003) 221-242. · Zbl 1029.60087 · doi:10.1007/s00440-003-0258-2
[4] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, Inc., New York, 1999. · Zbl 0944.60003
[5] P. Caputo and A. Faggionato. Diffusivity of 1-dimensional generalized Mott variable range hopping. Ann. Appl. Probab.19 (2009) 1459-1494. · Zbl 1173.60032 · doi:10.1214/08-AAP583
[6] P. Caputo, A. Faggionato and A. Gaudillière. Recurrence and transience for a random walk on a random point process. Electron. J. Probab.14 (2009) 2580-2616. · Zbl 1191.60120 · doi:10.1214/EJP.v14-721
[7] P. Caputo, A. Faggionato and T. Prescott. Invariance principle for Mott variable range hopping and other walks on point processes. Ann. Inst. Henri Poincaré Probab. Stat.49 (2013) 654-697. · Zbl 1296.60268 · doi:10.1214/12-AIHP490
[8] F. Comets and S. Popov. Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards. Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 721-744. · Zbl 1247.60139 · doi:10.1214/11-AIHP439
[9] E. Csáki and M. Csörgö. On additive functionals of Markov chains. J. Theoret. Probab.8 (1995) 905-919. · Zbl 0834.60073
[10] R. Durrett. Probability. Theory and Examples, 2nd edition. Duxbury Press, Washington, 1995.
[11] A. Faggionato and P. Mathieu. Mott law as upper bound for a random walk in a random environment. Comm. Math. Phys.281 (2008) 263-286. · Zbl 1162.60025 · doi:10.1007/s00220-008-0491-8
[12] A. Faggionato, H. Schulz-Baldes and D. Spehner. Mott law as lower bound for a random walk in a random environment. Comm. Math. Phys.263 (2006) 21-64. · Zbl 1153.82007 · doi:10.1007/s00220-005-1492-5
[13] E. G. Flytzanis. Ergodicity of the Cartesian product. Trans. Amer. Math. Soc.186 (1973) 171-176. · Zbl 0276.28016 · doi:10.1090/S0002-9947-1973-0328021-6
[14] N. Gantert, P. Mathieu and A. Piatnitski. Einstein relation for reversible diffusions in random environment. Comm. Pure Appl. Math.65 (2012) 187-228. · Zbl 1264.60062 · doi:10.1002/cpa.20389
[15] R. Lyons and Y. Peres. Probability on trees and networks. Version of 8th November 2016. Available online. · Zbl 1376.05002
[16] A. Miller and E. Abrahams. Impurity conduction at low concentrations. Phys. Rev.120 (1960) 745-755. · Zbl 0093.22403 · doi:10.1103/PhysRev.120.745
[17] N. F. Mott and E. A. Davis. Electronic Processes in Non-Crystaline Materials. Oxford University Press, New York, 1979.
[18] M. Pollak, M. Ortuño and A. Frydman. The Electron Glass. Cambridge University Press, Cambridge, 2013.
[19] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Grundlehren der Mathematischen Wissenschaften184. Springer, Berlin, 1971.
[20] B. Shklovskii and A. L. Efros. Electronic Properties of Doped Semiconductors. Springer, Berlin, 1984.
[21] F. Solomon. Random walks in a random environment. Ann. Probab.3 (1975) 1-31. · Zbl 0305.60029 · doi:10.1214/aop/1176996444
[22] H. Thorisson. Coupling, Stationarity, and Regeneration. Springer, Berlin, 2000. · Zbl 0949.60007
[23] S. R. S. Varadhan Probability Theory. American Mathematical Society, Providence, 2001. · Zbl 0980.60002
[24] O. Zeitouni. Random walks in random environment. In XXXI Summer School in Probability, St. Flour (2001) 193-312. · Zbl 1060.60103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.