×

zbMATH — the first resource for mathematics

Convergence of Ricci flows with bounded scalar curvature. (English) Zbl 1410.53063
Summary: In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension \(\geq 4\). We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case.
These results are based on a compactness theorem for Ricci flows with bounded scalar curvature, which states that any sequence of such Ricci flows converges, after passing to a subsequence, to a metric space that is smooth away from a set of codimension \(\geq 4\). In the course of the proof, we will also establish \(L^{p<2}\)-curvature bounds on time-slices of such flows.

MSC:
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C56 Other complex differential geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Chen, Xiuxiong; Wang, Bing, Space of {R}icci flows ({II})—part {A}: moduli of singular {C}alabi-{Y}au spaces, Forum Math. Sigma. Forum of Mathematics. Sigma, 5, 32-103, (2017) · Zbl 1385.53033
[2] Chen, Xiuxiong; Wang, Bing, Space of {R}icci flows ({II})—part {B}: weak compactness of the flows, (2017) · Zbl 1385.53033
[3] Chen, Xiuxiong; Wang, Bing, Space of {R}icci flows {I}, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 65, 1399-1457, (2012) · Zbl 1252.53076
[4] Almgren, Jr., F. J., {\(Q\)} valued functions minimizing {D}irichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc. (N.S.). American Mathematical Society. Bulletin. New Series, 8, 327-328, (1983) · Zbl 0557.49021
[5] Anderson, Michael T., Ricci curvature bounds and {E}instein metrics on compact manifolds, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 2, 455-490, (1989) · Zbl 0694.53045
[6] Anderson, Michael T., Convergence and rigidity of manifolds under {R}icci curvature bounds, Invent. Math.. Inventiones Mathematicae, 102, 429-445, (1990) · Zbl 0711.53038
[7] Bamler, Richard H., Structure theory of singular spaces, J. Funct. Anal.. Journal of Functional Analysis, 272, 2504-2627, (2017) · Zbl 1390.53025
[8] Richard H. Bamler; Qi S. Zhang, Heat kernel and curvature bounds in {R}icci flows with bounded scalar curvature — {P}art {II}, (2015) · Zbl 1421.53065
[9] Bamler, Richard H.; Zhang, Qi S., Heat kernel and curvature bounds in {R}icci flows with bounded scalar curvature, Adv. Math.. Advances in Mathematics, 319, 396-450, (2017) · Zbl 1421.53065
[10] Cheeger, Jeff; Colding, Tobias H., Lower bounds on {R}icci curvature and the almost rigidity of warped products, Ann. of Math. (2). Annals of Mathematics. Second Series, 144, 189-237, (1996) · Zbl 0865.53037
[11] Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with {R}icci curvature bounded below. {II}, J. Differential Geom.. Journal of Differential Geometry, 54, 13-35, (2000) · Zbl 1027.53042
[12] Cheeger, J.; Colding, T. H.; Tian, G., On the singularities of spaces with bounded {R}icci curvature, Geom. Funct. Anal.. Geometric and Functional Analysis, 12, 873-914, (2002) · Zbl 1030.53046
[13] Chen, Xiuxiong; Donaldson, Simon; Sun, Song, K\"ahler-{E}instein metrics on {F}ano manifolds. {I}: {A}pproximation of metrics with cone singularities, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 28, 183-197, (2015) · Zbl 1312.53096
[14] Chen, Xiuxiong; Donaldson, Simon; Sun, Song, K\"ahler-{E}instein metrics on {F}ano manifolds. {II}: {L}imits with cone angle less than {\(2\pi\)}, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 28, 199-234, (2015) · Zbl 1312.53097
[15] Chen, Xiuxiong; Donaldson, Simon; Sun, Song, K\"ahler-{E}instein metrics on {F}ano manifolds. {III}: {L}imits as cone angle approaches {\(2\pi\)} and completion of the main proof, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 28, 235-278, (2015) · Zbl 1311.53059
[16] Cheeger, Jeff; Haslhofer, Robert; Naber, Aaron, Quantitative stratification and the regularity of mean curvature flow, Geom. Funct. Anal.. Geometric and Functional Analysis, 23, 828-847, (2013) · Zbl 1277.53064
[17] Chow, Bennett, The {R}icci flow on the {\(2\)}-sphere, J. Differential Geom.. Journal of Differential Geometry, 33, 325-334, (1991) · Zbl 0734.53033
[18] Cheeger, Jeff; Naber, Aaron, Lower bounds on {R}icci curvature and quantitative behavior of singular sets, Invent. Math.. Inventiones Mathematicae, 191, 321-339, (2013) · Zbl 1268.53053
[19] Cheeger, Jeff; Naber, Aaron, Quantitative stratification and the regularity of harmonic maps and minimal currents, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 66, 965-990, (2013) · Zbl 1269.53063
[20] Cheeger, Jeff; Naber, Aaron, Regularity of {E}instein manifolds and the codimension 4 conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 182, 1093-1165, (2015) · Zbl 1335.53057
[21] Colding, Tobias H., Ricci curvature and volume convergence, Ann. of Math. (2). Annals of Mathematics. Second Series, 145, 477-501, (1997) · Zbl 0879.53030
[22] Chen, Xiuxiong; Wang, Bing, On the conditions to extend {R}icci flow({III}), Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 2349-2367, (2013) · Zbl 1317.53082
[23] Enders, Joerg; M\"uller, Reto; Topping, Peter M., On type-{I} singularities in {R}icci flow, Comm. Anal. Geom.. Communications in Analysis and Geometry, 19, 905-922, (2011) · Zbl 1244.53074
[24] Hamilton, Richard S., Three-manifolds with positive {R}icci curvature, J. Differential Geom.. Journal of Differential Geometry, 17, 255-306, (1982) · Zbl 0504.53034
[25] Hamilton, Richard S., The {R}icci flow on surfaces. Mathematics and General Relativity, Contemp. Math., 71, 237-262, (1988)
[26] Hamilton, Richard S., A compactness property for solutions of the {R}icci flow, Amer. J. Math.. American Journal of Mathematics, 117, 545-572, (1995) · Zbl 0840.53029
[27] Hamilton, Richard S., The formation of singularities in the {R}icci flow. Surveys in Differential Geometry, {V}ol. {II}, 7-136, (1995) · Zbl 0867.53030
[28] Haslhofer, Robert; M\"uller, Reto, A compactness theorem for complete {R}icci shrinkers, Geom. Funct. Anal.. Geometric and Functional Analysis, 21, 1091-1116, (2011) · Zbl 1239.53056
[29] Haslhofer, Robert; M\"uller, Reto, A note on the compactness theorem for 4d {R}icci shrinkers, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 143, 4433-4437, (2015) · Zbl 1323.53046
[30] Hein, Hans-Joachim; Naber, Aaron, New logarithmic {S}obolev inequalities and an {\(\epsilon\)}-regularity theorem for the {R}icci flow, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 67, 1543-1561, (2014) · Zbl 1297.53046
[31] Kleiner, Bruce; Lott, John, Notes on {P}erelman’s papers, Geom. Topol.. Geometry & Topology, 12, 2587-2855, (2008) · Zbl 1204.53033
[32] McCann, Robert J.; Topping, Peter M., Ricci flow, entropy and optimal transportation, Amer. J. Math.. American Journal of Mathematics, 132, 711-730, (2010) · Zbl 1203.53065
[33] Ni, Lei, Mean value theorems on manifolds, Asian J. Math.. Asian Journal of Mathematics, 11, 277-304, (2007) · Zbl 1139.58018
[34] Perelman, Grisha, The entropy formula for the {R}icci flow and its geometric applications, (2002) · Zbl 1130.53001
[35] Perelman, Grisha, Ricci flow with surgery on three-manifolds, (2003) · Zbl 1130.53002
[36] \v{S}e\v{s}um, Nata\v{s}a, Curvature tensor under the {R}icci flow, Amer. J. Math.. American Journal of Mathematics, 127, 1315-1324, (2005) · Zbl 1093.53070
[37] Sesum, Natasa, Convergence of the {R}icci flow toward a soliton, Comm. Anal. Geom.. Communications in Analysis and Geometry, 14, 283-343, (2006) · Zbl 1106.53045
[38] Simon, Miles, Extending four dimensional {R}icci flows with bounded scalar curvature, (2015)
[39] Simon, Miles, Some integral curvature estimates for the {R}icci flow in four dimensions, (2015)
[40] Sesum, Natasa; Tian, Gang, Bounding scalar curvature and diameter along the {K}\`“ahler {R}icci flow (after {P}erelman), J. Inst. Math. Jussieu. Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l”’Institut de Math\'ematiques de Jussieu, 7, 575-587, (2008) · Zbl 1147.53056
[41] Sturm, Karl-Theodor, Super-{R}icci flows for metric measure spaces, (2016) · Zbl 1401.37040
[42] Tian, Gang, K-stability and {K}\"ahler-{E}instein metrics, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 68, 1085-1156, (2015) · Zbl 1318.14038
[43] Topping, Peter, {\(\mathcal{L}\)}-optimal transportation for {R}icci flow, J. Reine Angew. Math.. Journal f\`“‘ur die Reine und Angewandte Mathematik. [Crelle””s Journal], 636, 93-122, (2009) · Zbl 1187.53072
[44] Tian, Gang; Zhang, Zhenlei, Regularity of the {K}\`“ahler-{R}icci flow, C. R. Math. Acad. Sci. Paris. Comptes Rendus Math\'”ematique. Acad\'emie des Sciences. Paris, 351, 635-638, (2013) · Zbl 1278.53073
[45] Tian, Gang; Zhu, Xiaohua, Convergence of the {K}\`“ahler-{R}icci flow on {F}ano manifolds, J. Reine Angew. Math.. Journal f\`‘ur die Reine und Angewandte Mathematik. [Crelle””s Journal], 678, 223-245, (2013) · Zbl 1276.14061
[46] Tian, Gang; Zhang, Zhenlei, Regularity of {K}\"ahler-{R}icci flows on {F}ano manifolds, Acta Math.. Acta Mathematica, 216, 127-176, (2016) · Zbl 1356.53067
[47] Wang, Bing, On the conditions to extend {R}icci flow({II}), Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 3192-3223, (2012) · Zbl 1251.53040
[48] White, Brian, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math.. Journal f\`“‘ur die Reine und Angewandte Mathematik. [Crelle””s Journal], 488, 1-35, (1997) · Zbl 0874.58007
[49] Zhang, Zhou, Scalar curvature behavior for finite-time singularity of {K}\"ahler-{R}icci flow, Michigan Math. J.. Michigan Mathematical Journal, 59, 419-433, (2010) · Zbl 1198.53079
[50] Zhang, Qi S., Bounds on volume growth of geodesic balls under {R}icci flow, Math. Res. Lett.. Mathematical Research Letters, 19, 245-253, (2012) · Zbl 1272.53056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.