zbMATH — the first resource for mathematics

Difficulties of quantitative tests of the Kerr-hypothesis with X-ray observations of mass accreting black holes. (English) Zbl 1400.83037
Summary: X-ray studies of stellar mass black holes in X-ray binaries and mass-accreting supermassive black holes in active galactic nuclei have achieved a high degree of maturity and have delivered detailed information about the astrophysical sources and the physics of black hole accretion. In this article, I review recent progress made towards using the X-ray observations for testing the “Kerr hypothesis” that the background spacetimes of all astrophysical quasi-stationary black holes are described by the Kerr metric. Although the observations have indeed revealed clear evidence for relativistic effects in strong-field gravity, quantitative tests of the Kerr hypothesis still struggle with theoretical and practical difficulties. In this article, I describe several recently introduced test metrics and review the status of constraining the background spacetimes of mass accreting stellar mass and supermassive black holes with these test metrics. The main conclusion of the discussion is that astrophysical uncertainties are large compared to the rather small observational differences between the Kerr and non-Kerr metrics precluding quantitative constraints on deviations from the Kerr metric at this point in time. I conclude with discussing future progress enabled by more detailed numerical simulations and by future X-ray spectroscopy, timing, polarimetry, and interferometry missions.
Reviewer: Reviewer (Berlin)

83C57 Black holes
85A25 Radiative transfer in astronomy and astrophysics
Full Text: DOI
[1] Abbott, B.P., et al.: (LIGO Scientific Collaboration), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)
[2] Abbott, B.P., et al.: (LIGO Scientific Collaboration), Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 1101 (2016)
[3] Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016)
[4] Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017)
[5] Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170608: Observation of a 19-solar-mass binary black hole coalescence. Astrophys J Lett. 851(2), L35 (2017)
[6] Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017)
[7] Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)
[8] Abramowicz, MA, QPO as the rosetta stone for understanding black hole accretion, Astron. Nachr., 326, 782a, (2005) · Zbl 1080.85006
[9] Abramowicz, MA; Fragile, PC, Foundations of black hole accretion disk theory, Living Rev. Relativ., 16, 1, (2013)
[10] Abramowicz, MA; Kluźniak, W, A precise determination of black hole spin in GRO J1655-40, Astron. Astrophys., 374L, 19a, (2001)
[11] Akiyama, K., Kuramochi, K., Ikeda, S., et al.: Imaging the Schwarzschild-radius-scale structure of M87 with the event horizon telescope using sparse modeling. Astrophys. J. 838, 1 (2017). http://eventhorizontelescope.org
[12] Aliev, AN; Gümrükçüoǧlu, AE, Charged rotating black holes on a 3-brane, Phys. Rev. D, 71, 104027, (2005)
[13] Ayzenberg, D; Yunes, N, Black hole continuum spectra as a test of general relativity: quadratic gravity, Class. Quantum Gravity, 34, 115003, (2017) · Zbl 1370.83037
[14] Balbus, SA; Hawley, JF, Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys., 70, 1, (1998)
[15] Bambi, C, A code to compute the emission of thin accretion disks in non-Kerr spacetimes and test the nature of black hole candidates, Astrophys. J., 761, 174b, (2012)
[16] Bambi, C, Testing the space-time geometry around black hole candidates with the analysis of the broad \(\text{K}α \) iron line, Phys. Rev. D, 87, 023007, (2013)
[17] Bambi, C; Cárdenas-Avendaño, A; Dauser, T; García, JA, Testing the Kerr black hole hypothesis using X-ray reflection spectroscopy, Astrophys. J., 842, 76b, (2017)
[18] Bambi, C; Jiang, J; Steiner, JF, Testing the no-hair theorem with the continuum-Fitting and the iron line methods: a short review, Class. Quantum Gravity, 33, 064001, (2016)
[19] Bardeen, JM; Petterson, JA, The lense-Thirring effect and accretion disks around Kerr black holes, Astrophys. J., 195, l65-l67, (1975)
[20] Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer Publisher, 1st edn. Cambridge University Press, Cambridge (2010) · Zbl 1198.83001
[21] Beheshtipour, B; Krawczynski, H; Malzac, J, The X-ray polarization of the accretion disk coronae of active galactic nuclei, Astrophys. J., 850, 14b, (2017)
[22] Berti, E; etal., Testing general relativity with present and future astrophysical observations, Class. Quantum Gravity, 32, 243001, (2015)
[23] Blackburne, JA; Kochanek, CS; Chen, B; Dai, X; Chartas, G, The structure of HE 1104-1805 from infrared to X-ray, Astrophys. J., 798, 95b, (2015)
[24] Blandford, RD; Znajek, RL, Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron. Soc., 179, 433, (1977)
[25] Boller, T; Müller, A; Greiner, W (ed.), Observational tests of the pseudo-complex theory of GR using black hole candidates, 245-253, (2015), Cham
[26] Boyer, RH; Lindquist, RW, Maximal analytic extension of the Kerr metric, J. Math. Phys., 8, 265, (1967) · Zbl 0149.23503
[27] Brenneman, L, Measuring supermassive black hole spins in AGN, Acta Polytech. Suppl., 53, 652, (2013)
[28] Brenneman, LW; Reynolds, CS, Constraining black hole spin via X-ray spectroscopy, Astrophys. J., 652, 1028b, (2006)
[29] Cardoso, V; Pani, P; Rico, J, On generic parametrizations of spinning black-hole geometries, Phys. Rev. D., 89, 064007, (2014)
[30] Carroll, S.: Spacetime and Geometry: An Introduction To General Relativity. Pearson, first edition, Appendix B (2003)
[31] Carter, B, Global structure of the Kerr family of gravitational fields, Phys. Rev., 174, 1559, (1968) · Zbl 0167.56301
[32] Carter, B, Hamilton-Jacobi and schrodinger separable solutions of einstein’s equations, Commun. Math. Phys., 10, 280, (1968) · Zbl 0162.59302
[33] Carter, B, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett., 26, 331, (1971)
[34] Carter, B; DeWitt, C (ed.); DeWitt, BS (ed.), Black hole equilibrium states, (1973), New York
[35] Castor, J.I.: Radiation Hydrodynamics. Cambridge University Press, Cambridge (2004)
[36] Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983, Reprint 2010) · Zbl 0511.53076
[37] Chartas, G; Agol, E; Eracleous, M; Garmire, G; Bautz, MW; Morgan, ND, Caught in the act: chandra observations of microlensing of the radio-loud quasar MG J0414+ 0534, Astrophys. J., 568, 509c, (2002)
[38] Chartas, G; Kochanek, CS; Dai, X; Moore, D; Mosquera, AM; Blackburne, JA, Revealing the structure of an accretion disk through energy-dependent X-ray microlensing, Astrophys. J., 757, 137c, (2012)
[39] Chartas, G; Kochanek, CS; Dai, X; Poindexter, S; Garmire, G, X-ray microlensing in RXJ1131-1231 and HE1104-1805, Astrophys. J., 693, 174, (2009)
[40] Chartas, G; Krawczynski, H; Zalesky, L; Kochanek, CS; Dai, X; Morgan, CW; Mosquera, A, Measuring the innermost stable circular orbits of supermassive black holes, Astrophys. J., 837, 26c, (2017)
[41] Chiang, C-Y; Walton, DJ; Fabian, AC; Wilkins, DR; Gallo, LC, Modelling the extreme X-ray spectrum of IRAS 13224-3809, Mon. Not. R. Astron. Soc., 446, 759, (2015)
[42] Dai, X; Kochanek, CS; Chartas, G; Kozłowski, S; Morgan, CW; Garmire, G; Agol, E, The sizes of the X-ray and optical emission regions of RXJ 1131-1231, Astrophys. J., 709, 278d, (2010)
[43] Dauser, T; Garcia, J; Wilms, J, Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes, Mon. Not. R. Astron. Soc., 430, 1694-1708, (2013)
[44] Davis, SW; Blaes, OM; Hubeny, I; Turner, NJ, Relativistic accretion disk models of high-state black hole X-ray binary spectra, Astrophys. J., 621, 372d, (2005)
[45] Davis, SW; Done, C; Blaes, OM, Testing accretion disk theory in black hole X-ray binaries, Astrophys. J., 647, 525, (2006)
[46] Demianski, M; Ivanov, PB, The dynamics of twisted accretion disc around a Kerr black hole, Astron. Astrophys., 324, 829d, (1997)
[47] Dovčiak, M; Karas, V; Matt, G; etal., Polarization signatures of strong gravity in active galactic nuclei accretion discs, Mon. Not. R. Astron. Soc., 355, 1005d, (2004)
[48] Dovčiak, M; Done, C, Minimum X-ray source size of the on-axis corona in AGN, Astron. Nachr., 337, 441, (2016)
[49] Duro, R; Dauser, T; Wilms, J, The broad iron \(\text{ K }α \) line of cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode, Astron. Astrophys., 533, l3, (2011)
[50] Edelson, R; Gelbord, JM; Horne, K; etal., Space telescope and optical reverberation mapping project. II. Swift and HST reverberation mapping of the accretion disk of NGC 5548, Astrophys. J., 806, 129, (2015)
[51] Elvis, M; Wilkes, BJ; McDowell, JC; etal., Atlas of quasar energy distributions, Astrophys. J. Suppl., 95, 1, (1994)
[52] Fabian, AC, The innermost extremes of black hole accretion, Astron. Nachr., 337, 375f, (2016)
[53] Fabian, AC; Rees, MJ; Stella, L; White, NE, X-ray fluorescence from the inner disc in cygnus X-1, Mon. Not. R. Astron. Soc., 238, 729f, (1989)
[54] Fabian, AC; Zoghbi, A; Ross, RR; etal., Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495, Nature, 459, 540, (2009)
[55] Fabian, AC; Wilkins, DR; Miller, JM, On the determination of the spin of the black hole in cyg X-1 from X-ray reflection spectra, Mon. Not. R. Astron. Soc., 424, 217, (2012)
[56] Fender, RP; Garrington, ST; McKay, DJ; etal., MERLIN observations of relativistic ejections from GRS 1915+ 105, Mon. Not. R. Astron. Soc., 304, 865f, (1999)
[57] Feng, Y; Ramesh, N, Hot accretion flows around black holes, Annu. Rev. Astron. Astrophys., 52, 529, (2014)
[58] Fock, V.: The Theory of Space, Time and Gravitation. Pergamon Press, New York (1964) · Zbl 0085.42301
[59] Fodor, G, Multipole moments of axisymmetric systems in relativity, J. Math. Phys., 30, 2252, (1989) · Zbl 0696.53057
[60] Foucart, F; Chandra, M; Gammie, CF; Quataert, E; Tchekhovskoy, A, How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes?, Mon. Not. R. Astron. Soc., 470, 2240f, (2017)
[61] Fragile, PC; Blaes, OM; Anninos, P; Salmonson, JD, Global general relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk, Astrophys. J., 668, 417-429, (2007)
[62] Fragile, PC; Lindner, CC; Anninos, P; Salmonson, JD, Application of the cubed-sphere grid to tilted black hole accretion disks, Astrophys. J., 691, 482f, (2009)
[63] Fürst, F; Nowak, MA; Tomsick, JA; etal., The complex accretion geometry of GX 339-4 as seen by nustar and SWIFT, Astrophys. J., 808, 122, (2015)
[64] Gair, J.A., Vallisneri, M., Larson, S.L., Baker, J.G.: Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev. Relativ. 16, 7 (2013). http://www.livingreviews.org/lrr-2013-7
[65] García, JA; Dauser, T; Lohfink, A, Improved reflection models of black hole accretion disks: treating the angular distribution of X-rays, Astrophys. J., 782, 76g, (2014)
[66] García, JA; Dauser, T; Reynolds, CS; Kallman, TR; McClintock, JE; Wilms, J; Eikmann, W, X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations, Astrophys. J., 768, 146, (2013)
[67] García, JA; Fabian, AC; Kallman, TR; Dauser, T; Parker, ML; McClintock, JE; Steiner, JF; Wilms, J, The effects of high density on the X-ray spectrum reflected from accretion discs around black holes, Mon. Not. R. Astron. Soc., 462, 751-760, (2016)
[68] García, JA; Steiner, JF; McClintock, JE; Remillard, RA, X-ray reflection spectroscopy of the black hole GX 339-4: exploring the hard state with unprecedented sensitivity, Astrophys. J., 813, 84, (2015)
[69] Geroch, R, Multipole moments. II. curved space, J. Math. Phys. (N.Y.), 11, 2580, (1970) · Zbl 1107.83312
[70] Ghasemi-Nodehi, M; Bambi, C, Constraining the Kerr parameters via X-ray reflection spectroscopy, Phys. Rev. D, 94, 104062, (2016)
[71] Gierliński, M; Maciołek-Niedźwiecki, A; Ebisawa, K, Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40, Mon. Not. R. Astron. Soc., 325, 1253g, (2001)
[72] Gilfanov, M; Merloni, A, Observational appearance of black holes in X-ray binaries and AGN, Space Sci. Rev., 183, 121, (2014)
[73] Glampedakis, K; Babak, S, Mapping spacetimes with LISA: inspiral of a test body in a ’quasi-kerr’ field, Class. Quantum Gravity, 23, 4167-4188, (2006) · Zbl 1101.83304
[74] Gonzalez, AG; Wilkins, DR; Gallo, LC, Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles, Mon. Not. R. Astron. Soc., 472, 1932g, (2017)
[75] Gou, L; McClintock, JE; Liu, J, A determination of the spin of the black hole primary in LMC X-1, Astrophys. J., 701, 1076-1090, (2009)
[76] Gou, L; McClintock, JE; Reid, MJ; etal., The extreme spin of the black hole in cygnus X-1, Astrophys. J., 742, 85g, (2011)
[77] Gou, L; McClintock, JE; Remillard, RA, Confirmation via the continuum-Fitting method that the spin of the black hole in cygnus X-1 is extreme, Astrophys. J., 790, 29, (2014)
[78] Greene, J; Bailyn, CD; Orosz, JA, Optical and infrared photometry of the microquasar GRO J1655-40 in quiescence, Astrophys. J., 554, 1290g, (2001)
[79] Hall, P., Sarrouh, G., Horne, K.: Non-blackbody disks can help explain inferred AGN accretion disk sizes, submitted to Astrophys. J. (2017). arXiv:1705.05467
[80] Hansen, RO, Multipole moments of stationary space-times, J. Math. Phys. (N.Y.), 15, 46, (1974) · Zbl 1107.83304
[81] Hawking, SW, Gravitational radiation from colliding black holes, Phys. Rev. Lett., 26, 1344-1346, (1971)
[82] Hawking, SW, Black holes in general relativity, Commun. Math. Phys., 25, 152-166, (1972)
[83] Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996) · Zbl 0945.83001
[84] Chruściel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012). https://link.springer.com/article/10.12942/lrr-2012-7 · Zbl 1316.83023
[85] Hoormann, JK; Beheshtipour, B; Krawczynski, H, Testing general relativity’s no-hair theorem with X-ray observations of black holes, Phys. Rev. D., 93, 044020, (2016)
[86] Ingram, A; Done, C; Fragile, PC, Low-frequency quasi-periodic oscillations spectra and lense-Thirring precession, Mon. Not. R. Astron. Soc., 397, l101-l105, (2009)
[87] Ingram, A; Maccarone, TJ; Poutanen, J; Krawczynski, H, Polarization modulation from lense-Thirring precession in X-ray binaries, Astrophys. J., 807, 53i, (2015)
[88] Ingram, A; Maccarone, TJ, An observational method for fast stochastic X-ray polarimetry timing, Mon. Not. R. Astron. Soc., 471, 4206-4217, (2017)
[89] Israel, W, Event horizons in static vacuum space-times, Phys. Rev., 164, 1776, (1967)
[90] Israel, W, Event horizons in static electrovac space-times, Commun. Math. Phys., 8, 245, (1968)
[91] Ivanov, PB; Illarionov, AF, The oscillatory shape of the stationary twisted disc around a Kerr black hole, Mon. Not. R. Astron. Soc., 285, 394-402, (1997)
[92] Jiang, YF; Davis, SW; Stone, JM, Iron opacity bump changes the stability and structure of accretion disks in active galactic nuclei, Astrophys. J., 827, 10, (2016)
[93] Jiang, Y-F; etal., Detection of time lags between quasar continuum emission bands based on pan-STARRS light curves, Astrophys. J., 836, 186, (2017)
[94] Johannsen, T; Psaltis, D, Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem, Phys. Rev. D, 83, 124015, (2011)
[95] Johannsen, T, Regular black hole metric with three constants of motion, Phys. Rev. D., 88, 044002, (2013)
[96] Johannsen, T; Psaltis, D, Testing the no-hair theorem with observations in the electromagnetic spectrum. IV. relativistically broadened iron lines, Astrophys. J., 773, 57j, (2013)
[97] Johannsen, T, Systematic study of event horizons and pathologies of parametrically deformed Kerr spacetimes, Phys. Rev. D., 87, 124017, (2013)
[98] Johannsen, T, Photon rings around Kerr and Kerr-like black holes, Astrophys. J., 777, 117, (2013)
[99] Johannsen, T, X-ray probes of black hole accretion disks for testing the no-hair theorem, Phys. Rev. D, 90, 064002, (2014)
[100] Johannsen, T, Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum, Class. Quantum Gravity, 33, 124001, (2016)
[101] Kerr, RP, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237, (1963) · Zbl 0112.21904
[102] Khargharia, J; Froning, CS; Robinson, EL, Near-infrared spectroscopy of low-mass X-ray binaries: accretion disk contamination and compact object mass determination in V404 CYG and cen X-4, Astrophys. J., 716, 1105-1117, (2010)
[103] Kislat, F; Beheshtipour, B; Dowkontt, P; etal., Design of the telescope truss and gondola for the balloon-borne X-ray polarimeter X-calibur, J. Astron. Instrum., 6, 1740003, (2017)
[104] Kleihaus, B; Kunz, J; Radu, E, Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. Lett., 106, 151104, (2011)
[105] Kolehmainen, M; Done, C, Limits on spin determination from disc spectral Fitting in GX \(339-4\), Mon. Not. R. Astron. Soc., 406, 2206-2212, (2010)
[106] Kolehmainen, M; Done, C; Díaz Trigo, M, Modelling the high-mass accretion rate spectra of GX 339-4: black hole spin from reflection?, Mon. Not. R. Astron. Soc., 416, 311-321, (2011)
[107] Kong, L; Li, Z; Bambi, C, Constraints on the spacetime geometry around 10 stellar-mass black hole candidates from the disk’s thermal spectrum, Astrophys. J., 797, 78, (2014)
[108] Konoplya, R; Rezzolla, L; Zhidenko, A, General parametrization of axisymmetric black holes in metric theories of gravity, Phys. Rev. D., 93, 064015, (2016)
[109] Krawczynski, H, Tests of general relativity in the strong-gravity regime based on X-ray spectropolarimetric observations of black holes in X-ray binaries, Astrophys. J., 754, 133, (2012)
[110] Krawczynski, H; Chartas, G, Modeling of the microlensed \(\text{ Fe } \text{ K }α \) emission from the quasar RX J1131-1231, Astrophys. J. Lett., 843, 118k, (2017)
[111] Krawczynski, H; Stern, D; Harrison, FA; etal., X-ray polarimetry with the polarization spectroscopic telescope array (polstar), Astropart. Phys., 75, 8k, (2016)
[112] Kulkarni, AK; Penna, RF; Shcherbakov, RV; etal., Measuring black hole spin by the continuum-Fitting method: effect of deviations from the Novikov-thorne disc model, Mon. Not. R. Astron. Soc., 414, 1183, (2011)
[113] Kumar, S; Pringle, JE, Twisted accretion disks: the Bardeen-petterson effect, Mon. Not. R. Astron. Soc., 213, 435-442, (1985)
[114] Lense, J; Thirring, H, Über die einfluß der eigenrotation der zentralkörper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie, Zeit. Phys., 19, 156-163, (1918) · JFM 46.1317.01
[115] Li, L-X; Narayan, R; McClintock, JE; etal., Inferring the inclination of a black hole accretion disk from observations of its polarized continuum radiation, Astrophys. J. Lett., 691, 847l, (2009)
[116] LIGOScientific Collaboration and Virgo Collaboration: Fermi Gamma-ray Burst Monitor, and INTEGRAL, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017)
[117] Lubow, SH; Ogilvie, GI; Pringle, JE, The evolution of a warped disc around a Kerr black hole, Mon. Not. R. Astron. Soc., 337, 706-712, (2002)
[118] Maccarone, T.J.: On the misalignment of jets in microquasars. Mon. Not. R. Astron. Soc. 336, 1371 (2002), Erratum: On the misalignment of jets in microquasars. Mon. Not. R. Astron. Soc. 446, 3162M (2015)
[119] MacLeod, CL; Morgan, CW; Mosquera, A; etal., A consistent picture emerges: a compact X-ray continuum emission region in the gravitationally lensed quasar SDSS J0924+0219, Astrophys. J., 806, 258m, (2015)
[120] Marin, F; Dovčiak, M; Muleri, F; Kislat, FF; Krawczynski, HS, Predicting the X-ray polarization of type 2 seyfert galaxies, Mon. Not. R. Astron. Soc., 473, 1286m, (2018)
[121] Marshall, M.D., Avara, M.J., McKinney, J.C.: Angular momentum transport in thin magnetically arrested disks (2017). arXiv:1709.10113
[122] Martin, RG; Tout, CA; Pringle, JE, Alignment time-scale of the microquasar GRO J1655-40, Mon. Not. R. Astron. Soc., 387, 188, (2008)
[123] Matt, G; Perola, GC; Piro, L, The iron line and high energy bump as X-ray signatures of cold matter in seyfert 1 galaxies, Astron. Astrophys., 247, 25, (1991)
[124] Mazur, PO, Proof of uniqueness of the Kerr-Newman black hole solution, J. Phys. A Math. Gen., 15, 3173-3180, (1982) · Zbl 1141.83304
[125] Mazur, P.O.: Black Hole Uniqueness Theorems. (2009) http://adsabs.harvard.edu/abs/2001hep.th....1012M
[126] McClintock, JE; Narayan, R; Steiner, JF, Black hole spin via continuum Fitting and the role of spin in powering transient jets, Space Sci. Rev., 183, 295m, (2014)
[127] McClintock, JE; Shafee, R; Narayan, R; Remillard, RA; Davis, SW; Li, L-X, The spin of the near-extreme Kerr black hole GRS 1915+105, Astrophys. J., 652, 518-539, (2006)
[128] Middleton, M; Done, C; Gierliński, M; Davis, SW, Black hole spin in GRS 1915+105, Mon. Not. R. Astron. Soc., 373, 1004-1012, (2006)
[129] Miller, JM, Relativistic X-ray lines from the inner accretion disks around black holes, Ann. Rev. Astron. Astrophys., 45, 441-79, (2007)
[130] Miller, JM; Pooley, GG; Fabian, AC; etal., On the role of the accretion disk in black hole disk-jet connections, Astrophys. J., 757, 11, (2012)
[131] Miller, JM; Parker, ML; Fürst, F; etal., Nustar spectroscopy OF GRS 1915+105: disk reflection, spin, and connections to jets, Astrophys. J. Lett., 775, l45, (2013)
[132] Miller, JM; Reynolds, CS; Fabian, AC; Miniutti, G; Gallo, LC, Stellar-mass black hole spin constraints from disk reflection and continuum modeling, Astrophys. J., 697, 900m, (2009)
[133] Mishra, B; Fragile, PC; Johnson, LC; Kluźniak, W, Three-dimensional, global, radiative GRMHD simulations of a thermally unstable disc, Mon. Not. R. Astron. Soc., 463, 3437m, (2016)
[134] Morales Teixeira, D; Fragile, PC; Zhuravlev, VV; Ivanov, PB, Conservative grmhd simulations of moderately thin, tilted accretion disks, Astrophys. J., 796, 103, (2014)
[135] Morgan, CW; Kochanek, CS; Morgan, ND; Falco, EE, The quasar accretion disk size-black hole mass relation, Astrophys. J., 712, 1129, (2010)
[136] Morgan, CW; etal., Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158-4325, Astrophys. J., 756, 52, (2012)
[137] Mosquera, AM, The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305, Astrophys. J., 769, 53, (2013)
[138] Nandra, K.: ATHENA: the advanced telescope for high energy astrophysics, The X-ray Universe 2011, Berlin, Germany, 27-30 June 2011 (2011). https://www.cosmos.esa.int/documents/332006/954767/Nandra_TopicK.pdf
[139] Narayan, R; Zhu, Y; Psaltis, D; Sa̧dowski, A, HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs, Mon. Not. R. Astron. Soc., 457, 608, (2016)
[140] Neustroev, VV; Veledina, A; Poutanen, J; Zharikov, SV; Tsygankov, SS; Sjoberg, G; Kajava, JJE, Spectroscopic evidence for a low-mass black hole in SWIFT J1753.5-0127, Mon. Not. R. Astron. Soc., 445, 2424n, (2014)
[141] Newman, E., Adamo, T.: Kerr-Newman metric. Scholarpedia 9, 31791 (2014). http://www.scholarpedia.org/article/Kerr-Newman_metric
[142] Newman, ET; Couch, E; Chinnapared, K; Exton, A; Prakash, A; Torrence, R, Metric of a rotating, charged mass, J. Math. Phys., 6, 918, (1965)
[143] Noble, SC; etal., Radiative efficiency and thermal spectrum of accretion onto Schwarzschild black holes, Astrophys. J., 743, 115, (2011)
[144] Novikov, ID; Thorne, KS; DeWitt, C (ed.); DeWitt, BS (ed.), Black hole equilibrium states, 343-450, (1973), New York
[145] Orosz, JA; McClintock, JE; Remillard, RA; Corbel, S, Orbital parameters for the black hole binary XTE J1650-500, Astrophys. J., 616, 376o, (2004)
[146] Orosz, JA; McClintock, JE; Aufdenberg, JP; Remillard, RA; Reid, MJ; Narayan, R; Gou, L, The mass of the black hole in cygnus X-1, Astrophys. J., 742, 84o, (2011)
[147] Page, DN; Thorne, KS, Disk-accretion onto a black hole. time-averaged structure of accretion disk, Astrophys. J., 191, 499, (1974)
[148] Pani, P; Macedo, CFB; Crispino, LCB; Cardoso, V, Slowly rotating black holes in alternative theories of gravity, Phys. Rev. D, 84, 087501, (2011)
[149] Papaloizou, JCB; Lin, DNC, On the dynamics of warped accretion disks, Astrophys. J., 438, 841p, (1995)
[150] Papaloizou, JCB; Pringle, JE, The time-dependence of non-planar accretion disks, Mon. Not. R. Astron. Soc., 202, 1181-1194, (1983) · Zbl 0564.76054
[151] Parker, ML; Tomsick, JA; Kennea, JA; etal., Nustar and SWIFT observations of the very high state in GX 339-4: weighing the black hole with X-rays, Astrophys. J. Lett., 821, l6, (2016)
[152] Penna, RF; Sa̧dowski, A; McKinney, JC, Thin-disc theory with a non-zero-torque boundary condition and comparisons with simulations, Mon. Not. R. Astron. Soc., 420, 684-698, (2012)
[153] Poisson, E., Will, C.M.: Gravity: Newtonian, Post-Newtonian, Relativistic, 1st edn. Cambridge University Press, Cambridge (2014) · Zbl 1334.83001
[154] Psaltis, D, Probes and tests of strong-field gravity with observations in the electromagnetic spectrum, Living Rev. Relativ., 11, 9, (2008) · Zbl 1166.85302
[155] Psaltis, D; Johannsen, T, A ray-tracing algorithm for spinning compact object spacetimes with arbitrary quadrupole moments. I. quasi-Kerr black holes, Astrophys. J., 745, 6, (2012)
[156] Remillard, RA; McClintock, JE, X-ray properties of black-hole binaries, Ann. Rev. Astron. Astrophys., 44, 49r, (2006)
[157] Reid, MJ; McClintock, JE; Narayan, R; Gou, L; Remillard, RA; Orosz, JA, The trigonometric parallax of cygnus X-1, Astrophys. J., 742, 83r, (2011)
[158] Reid, MJ; McClintock, JE; Steiner, JF; Steeghs, D; Remillard, RA; Dhawan, V; Narayan, R, A parallax distance to the microquasar GRS 1915+ 105 and a revised estimate of its black hole mass, Astrophys. J., 796, 2, (2014)
[159] Reis, RC; Fabian, AC; Ross, RR; Miller, JM, Determining the spin of two stellar-mass black holes from disc reflection signatures, Mon. Not. R. Astron. Soc., 395, 1257-1264, (2009)
[160] Reis, RC; Fabian, AC; Ross, RR; Miniutti, G; Miller, JM; Reynolds, C, A systematic look at the very high and low/hard state of GX \(339-4\): constraining the black hole spin with a new reflection model, Mon. Not. R. Astron. Soc., 387, 1489-1498, (2008)
[161] Reis, RC; Miller, JM; Reynolds, MT; Fabian, AC; Walton, DJ, Suzaku observation of the black hole candidate maxi J1836-194 in a hard/intermediate spectral state, Astrophys. J., 751, 34r, (2012)
[162] Reis, RC; Reynolds, MT; Miller, JM; Walton, DJ, Reflection from the strong gravity regime in a z = 0.658 gravitationally lensed-quasar, Nature, 507, 207, (2014)
[163] Reynolds, CS; Fabian, AC, Special relativistic effects on the strength of the fluorescent kalpha iron line from black hole accretion discs, Mon. Not. R. Astron. Soc., 290L, 1r, (1997)
[164] Risaliti, G; Harrison, FA; Madsen, KK; etal., A rapidly spinning supermassive black hole at the centre of NGC 1365, Nature, 494, 449-451, (2013)
[165] Robinson, DC, Uniqueness of the Kerr black hole, Phys. Rev. Lett., 34, 905-906, (1975)
[166] Robinson, D.C.: Four decades of black hole uniqueness theorems. In: Wiltshire, D.L., Visser, M., Scott, S.M. (eds.) The Kerr Spacetime: Rotating Black Holes in General Relativity, pp. 115-143. Cambridge University Press, Cambridge (2009). https://nms.kcl.ac.uk/david.robinson/web_page/blackholes.pdf · Zbl 1188.83062
[167] Ross, RR; Fabian, AC, A comprehensive range of X-ray ionized-reflection models, Mon. Not. R. Astron. Soc., 358, 211, (2005)
[168] Russell, TD; Soria, R; Motch, C, The face-on disc of MAXI J1836-194, Mon. Not. R. Astron. Soc., 439, 1381-1389, (2014)
[169] Ryan, FD, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments, Phs. Rev. D, 52, 5707r, (1995)
[170] Ryan, BR; Ressler, SM; Dolence, JC; Tchekhovskoy, A; Gammie, C; Quataert, E, The radiative efficiency and spectra of slowly accreting black holes from two-temperature GRRMHD simulations, Astrophys. J. Lett., 844L, 24r, (2017)
[171] Sa̧dowski, A; Narayan, R, Three-dimensional simulations of supercritical black hole accretion discs—luminosities, photon trapping and variability, Mon. Not. R. Astron. Soc., 456, 3929, (2016)
[172] Schnittman, JD; Homan, J; Miller, JM, A precessing ring model for low-frequency quasi-periodic oscillations, Astrophys. J., 642, 420s, (2006)
[173] Schnittman, JD; Krolik, JH, X-ray polarization from accreting black holes: the thermal state, Astrophys. J., 701, 1175s, (2009)
[174] Schnittman, JD; Krolik, JH, X-ray polarization from accreting black holes: coronal emission, Astrophys. J., 712, 908s, (2010)
[175] Schnittman, J.D., Angelini, L., Baring, M., et al.: X-ray polarization from black holes: GEMS scientific white paper (2013). arXiv:1301.1957S
[176] Schnittman, JD; Krolik, JH; Noble, SC, X-ray spectra from magnetohydrodynamic simulations of accreting black holes, Astrophys. J., 769, 156, (2013)
[177] Shakura, NI; Sunyaev, RA, Black holes in binary systems: observational appearance, Astron. Astrophys., 24, 337-355, (1973)
[178] Shafee, R; McClintock, JE; Narayan, R; Davis, SW; Li, L-X; Remillard, RA, Estimating the spin of stellar-mass black holes by spectral Fitting of the X-ray continuum, Astrophys. J. Lett., 636, l113, (2006)
[179] Shimura, T; Takahara, F, On the spectral hardening factor of the X-ray emission from accretion disks in black hole candidates, Astrophys. J., 445, 780-788, (1995)
[180] Sotiriou, TP; Limerati, S, Theory of gravitation theories: a no-progress report, Int. J. Mod. Phys. D, 17, 399-423, (2008) · Zbl 1153.83008
[181] Stefanov, IZ, Confronting models for the high-frequency QPOs with lense-Thirring precession, Mon. Not. R. Astron. Soc., 444, 2178s, (2014)
[182] Steiner, JF; McClintock, JE, Modeling the jet kinematics of the black hole microquasar XTE J1550-564: a constraint on spin-orbit alignment, Astrophys. J., 745, 136, (2012)
[183] Steiner, JF; McClintock, JE; Orosz, JA; Remillard, RA; Bailyn, CD; Kolehmainen, M; Straub, O, The low-spin black hole in LMC X-3, Astrophys. J. Lett., 793, 29, (2014)
[184] Steiner, JF; Reis, RC; Fabian, AC; etal., A broad iron line in LMC X-1, Mon. Not. R. Astron. Soc., 427, 2552-2561, (2012)
[185] Steiner, JF; Reis, RC; McClintock, JE; etal., The spin of the black hole microquasar XTE J1550-564 via the continuum-Fitting and fe-line methods, Mon. Not. R. Astron. Soc., 416, 941, (2011)
[186] Stella, L; Vietri, M, Lense-Thirring precession and quasi-periodic oscillations in low-mass X-ray binaries, Astrophys. J. Lett., 492L, 59s, (1998)
[187] Stella, L; Vietri, M; Morsink, SM, Correlations in the quasi-periodic oscillation frequencies of low-mass X-ray binaries and the relativistic precession model, Astrophys. J. Lett., 524L, 63s, (1999)
[188] Shakura, NI; Sunyaev, RA, Black holes in binary systems. observational appearance, Astron. Astrophys., 24, 337-355, (1973)
[189] Teukolsky, SA, The Kerr metric, Class. Quantum Gravity, 32, 124006, (2015) · Zbl 1320.83017
[190] The Black Hole Imager https://bhi.gsfc.nasa.gov
[191] Thornburg, J.: Event and apparent horizon finders for \(3+1\) numerical relativity. Living Rev. Relativ. 10, 3 (2007). http://www.livingreviews.org/lrr-2007-3 · Zbl 1116.83001
[192] Thorne, KS; Will, CM, Theoretical frameworks for testing relativistic gravity. I. foundations, Astrophys. J., 163, 595t, (1971)
[193] Thorne, K.S., Price, R.H., MacDonald, D.A.: Black Holes, The Membrane Paradigm. Yale University Press, New Haven and London (1986) · Zbl 1374.83002
[194] Tomsick, JA; Nowak, MA; Parker, M; etal., The reflection component from cygnus X-1 in the soft state measured by nustar AND suzaku, Astrophys. J., 780, 78, (2014)
[195] Tomsick, JA; Parker, ML; García, JA; etal., Alternative explanations for extreme supersolar iron abundances inferred from the energy spectrum of cygnus X-1, Astrophys. J., 855, 3, (2018)
[196] Uttley, P; Cackett, EM; Fabian, AC; Kara, E; Wilkins, DR, X-ray reverberation around accreting black holes, Astron. Astrophys. Rev., 22, 72, (2014)
[197] Veledina, A; Poutanen, J; Ingram, A, A unified lense-Thirring precession model for optical and X-ray quasi-periodic oscillations in black hole binaries, Astrophys. J., 778, 165v, (2013)
[198] van der Klis, M.: Rapid X-ray variability . In: Lewin, W., van der Klis, M. (eds.) Compact stellar X-ray sources. Cambridge Astrophysics Series, vol. 39, pp. 39-112. Cambridge University Press, Cambridge, UK. ISBN 978-0-521-82659-4, ISBN 0-521-82659-4 (2006). https://doi.org/10.2277/0521826594
[199] Vigeland, S; Yunes, N; Stein, LC, Bumpy black holes in alternative theories of gravity, Phys. Rev., 83, 104027, (2011)
[200] Walton, DJ; Reis, RC; Cackett, EM; Fabian, AC; Miller, JM, The similarity of broad iron lines in X-ray binaries and active galactic nuclei, Mon. Not. R. Astron. Soc., 422, 2510w, (2012)
[201] Walton, DJ; Tomsick, JA; Madsen, KK; etal., The soft state of cygnus X-1 observed with nustar: a variable corona and a stable inner disk, Astrophys. J., 826, 87, (2016)
[202] Walton, DJ; Mooley, K; King, AL; etal., Living on a flare: relativistic reflection in V404 cyg observed by nustar during its summer 2015 outburst, Astrophys. J., 839, 110w, (2017)
[203] Weisskopf, MC; Ramsey, B; O’Dell, S; etal., The imaging X-ray polarimetry explorer (IXPE), SPIE, 9905E, 17w, (2016)
[204] Will, C, The confrontation between general relativity and experiment, Living Rev. Relativ., 17, 4, (2014) · Zbl 1316.83019
[205] Wilms, Jörn; Reynolds, CS; Begelman, MC; Reeves, J; Molendi, S; Staubert, R; Kendziorra, E, XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole?, Mon. Not. R. Astron. Soc., 328, 27, (2001)
[206] Wilkins, DC, Bound geodesics in the Kerr metric, Phys. Rev. D., 5, 814, (1974)
[207] Wilson-Hodge, CA; Ray, PS; Gendreau, K, STROBE-X: X-ray timing and spectroscopy on dynamical timescales from microseconds to years, Res. Phys., 7, 3704w, (2017)
[208] Yunes, N., Siemens, S.: Gravitational-wave tests of general relativity with ground-based detectors and pulsar-timing arrays. Living Rev. Relativ. 16, 9 (2013). http://www.livingreviews.org/lrr-2013-9
[209] Zhang, S-N, Black hole binaries and microquasars, Front. Phys., 8, 630z, (2013)
[210] Zhang, S-N; Cui, Wei; Chen, Wan, Black hole spin in X-ray binaries: observational consequences, Astrophys. J. Lett., 482L, 155z, (1997)
[211] Zhang, S-N; Feroci, M; Santangelo, A, Extp: enhanced X-ray timing and polarimetry mission, Proc. SPIE, 9905, 99051q-1, (2016)
[212] Zhu, Y; Davis, SW; Narayan, R; etal., The eye of the storm: light from the inner plunging region of black hole accretion discs, Mon. Not. R. Astron. Soc., 424, 2504, (2012)
[213] Zhuravlev, VV; Ivanov, PB, A fully relativistic twisted disc around a slowly rotating Kerr black hole: derivation of dynamical equations and the shape of stationary configurations, Mon. Not. R. Astron. Soc., 415, 2122-2144, (2011)
[214] Zhuravlev, VV; Ivanov, PB; Fragile, PC; Morales Teixeira, D, No evidence for Bardeen-petterson alignment in GRMHD simulations and semi-analytic models of moderately thin, prograde, tilted accretion disks, Astrophys. J., 796, 104, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.