Topological data analysis of single-trial electroencephalographic signals. (English) Zbl 1405.62212

Summary: Epilepsy is a neurological disorder marked by sudden recurrent episodes of sensory disturbance, loss of consciousness, or convulsions, associated with abnormal electrical activity in the brain. Statistical analysis of neurophysiological recordings, such as electroencephalography (EEG), facilitates the understanding of epileptic seizures. Standard statistical methods typically analyze amplitude and frequency information in EEG signals. In the current study, we propose a topological data analysis (TDA) framework to analyze single-trial EEG signals. The framework denoises signals with a weighted Fourier series (WFS), and tests for differences between the topological features–persistence landscapes (PLs) of denoised signals through resampling in the frequency domain. Simulation studies show that the test is robust for topologically similar signals while bearing sensitivity to topological tearing in signals. In an application to single-trial epileptic EEG signals, EEG signals in the diagnosed seizure origin and its symmetric site are found to have similar PLs before and during a seizure attack, in contrast to signals at other sites showing significant statistical difference in the PLs of the two phases.


62P10 Applications of statistics to biology and medical sciences; meta analysis
62-07 Data analysis (statistics) (MSC2010)
55R40 Homology of classifying spaces and characteristic classes in algebraic topology
62H35 Image analysis in multivariate analysis
62G09 Nonparametric statistical resampling methods
Full Text: DOI Euclid


[1] Abramovich, F. and Benjamini, Y. (1996). Adaptive thresholding of wavelet coefficients. Comput. Statist. Data Anal.22 351–361.
[2] Adler, R. J., Bobrowski, O., Borman, M. S., Subag, E. and Weinberger, S. (2010). Persistent homology for random fields and complexes. In Borrowing Strength: Theory Powering Applications—a Festschrift for Lawrence D. Brown. Inst. Math. Stat. (IMS) Collect.6 124–143. IMS, Beachwood, OH. Available at arXiv:1003.1001.
[3] Ahmed, M., Fasy, B. T. and Wenk, C. (2014). Local persistent homology based distance between maps. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 43–52.
[4] Bancaud, J., Brunet-Bourgin, F., Chauvel, P. and Halgren, E. (1994). Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy. Brain117 71–90.
[5] Bartolomei, F., Chauvel, P. and Wendling, F. (2008). Epileptogenicity of brain structures in human temporal lobe epilepsy: A quantified study from intracerebral EEG. Brain131 1818–1830.
[6] Bendich, P., Marron, J. S., Miller, E., Pieloch, A. and Skwerer, S. (2016). Persistent homology analysis of brain artery trees. Ann. Appl. Stat.10 198–218.
[7] Botev, Z. I., Grotowski, J. F. and Kroese, D. P. (2010). Kernel density estimation via diffusion. Ann. Statist.38 2916–2957. · Zbl 1200.62029
[8] Brazier, M. A. B. (1972). Spread of seizure discharges in epilepsy: Anatomical and electrophysiological considerations. Exp. Neurol.36 263–272.
[9] Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res.16 77–102. · Zbl 1337.68221
[10] Bubenik, P., Carlson, G., Kim, P. T. and Luo, Z.-M. (2010). Statistical topology via Morse theory persistence and nonparametric estimation. In Algebraic Methods in Statistics and Probability II. Contemporary Mathematics.516 75–92. · Zbl 1196.62041
[11] Burns, S. P., Santaniello, S., Yaffe, R. B., Jouny, C. C., Crone, N. E., Bergey, G. K., Anderson, W. S. and Sarma, S. V. (2014). Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl. Acad. Sci. USA111 E5321–E5330.
[12] Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255–308. · Zbl 1172.62002
[13] Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation. Ann. Statist.28 408–428. · Zbl 1106.62318
[14] Chazal, F., Fasy, B. T., Lecci, F., Michel, B., Rinaldo, A. and Wasserman, L. (2014). Subsampling methods for persistent homology. Available at arXiv:1406.1901.
[15] Chung, M. K. (2014). Statistical and Computational Methods in Brain Image Analysis. Chapman & Hall/CRC, London.
[16] Chung, M. K., Bubenik, P. and Kim, P. T. (2009). Persistence diagrams of cortical surface data. In Proceedings of the 21st International Conference on Information Processing in Medical Imaging (IPMI) 386–397.
[17] Chung, M., Dalton, K., Shen, L., Evans, A. C. and Davidson, R. J. (2007). Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans. Med. Imag.26 566–581.
[18] Chung, M. K., Schaefer, S. M., van Reekum, C. M., Peschke-Schmitz, L., Sutterer, M. J. and Davidson, R. J. (2014). A unified kernel regression for diffusion wavelets on manifolds detects aging-related changes in the amygdala and hippocampus. In Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). LNCS8674 791–798.
[19] Chung, M. K., Hanson, J. L., Ye, J., Davidson, R. J. and Pollak, S. D. (2015). Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans. Med. Imag.34 1928–1939.
[20] Cohen-Steiner, D. and Edelsbrunner, H. (2009). Lipschitz functions have \(L_{p}\)-stable persistence. Found. Comput. Math.10 127–139. · Zbl 1192.55007
[21] Cohen-Steiner, D., Edelsbrunner, H. and Harer, J. (2007). Stability of persistence diagrams. Discrete Comput. Geom.37 103–120. · Zbl 1117.54027
[22] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika81 425–455. · Zbl 0815.62019
[23] Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc.90 1200–1224. · Zbl 0869.62024
[24] Edelsbrunner, H. and Harer, J. L. (2010). Computational Topology: An Introduction. Amer. Math. Soc., Providence, RI. · Zbl 1193.55001
[25] Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2002). Topological persistence and simplification. Discrete Comput. Geom.28 511–533. · Zbl 1011.68152
[26] Fried, I. (1997). Auras and experiential responses arising in the temporal lobe. J. Neuropsychiatry Clin. Neurosci.9 420–428.
[27] Gamble, J. and Heo, G. (2010). Exploring uses of persistent homology for statistical analysis of landmark-based shape data. J. Multivariate Anal.101 2184–2199. · Zbl 1203.62116
[28] Hatcher, A. (2002). Algebraic Topology. Cambridge Univ. Press, Cambridge. · Zbl 1044.55001
[29] Heo, G., Gamble, J. and Kim, P. T. (2012). Topological analysis of variance and the maxillary complex. J. Amer. Statist. Assoc.107 477–492. · Zbl 1261.62096
[30] Khalid, A., Kim, B. S., Chung, M. K., Ye, J. C. and Jeon, D. (2014). Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology. NeuroImage101 351–363.
[31] Kobau, R., Luo, Y., Zack, M., Helmers, S. and Thurman, D. (2012). Epilepsy in adults and access to care—United States, 2010. Morb. Mort. Wkly. Rep.61 910–913.
[32] Lange, H., Lieb, J., Engel, J. J. and Crandall, P. (1983). Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol.1978 543–555.
[33] Lee, H., Chung, M. K., Kang, H., Kim, B. N. and Lee, D. S. (2011). Computing the shape of brain networks using graph filtration and Gromov–Hausdorff metric. In Proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). LNCS6892 302–309.
[34] Maris, E. (2012). Statistical testing in electrophysiological studies. Psychophysiology49 549–565.
[35] Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clémenceau, S., Renault, B. and Varela, F. (1998). Can epileptic seizure be anticipated by nonlinear analysis? Nat. Med.4 1173–1176.
[36] McSharry, P. E., Smith, L. A. and Tarassenko, L. (2003). Prediction of epileptic seizures: Are nonlinear methods relevant? Nat. Med.9 241–242; author reply 242.
[37] Mileyko, Y., Mukherjee, S. and Harer, J. (2011). Probability measures on the space of persistence diagrams. Inverse Probl.27 1–21. · Zbl 1247.68310
[38] Milnor, J. (1963). Morse Theory. Princeton Univ. Press, Princeton. · Zbl 0108.10401
[39] Mitra, P. P. and Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophys. J.76 691–708.
[40] Mohseni, H. R., Maghsoudi, A. and Shamsollahi, M. B. (2006). Seizure detection in EEG signals: A comparison of different approaches. In Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 6724–6727.
[41] Ombao, H., von Sachs, R. and Guo, W. (2005). SLEX analysis of multivariate nonstationary time series. J. Amer. Statist. Assoc.100 519–531. · Zbl 1117.62407
[42] Ombao, H. C., Raz, J. A., von Sachs, R. and Malow, B. A. (2001). Automatic statistical analysis of bivariate nonstationary time series. J. Amer. Statist. Assoc.96 543–560. · Zbl 1018.62080
[43] Oppenheim, A. V. and Schafer, R. W. (1989). Discrete-Time Signal Processing. Prentice Hall, New York. · Zbl 0676.42001
[44] Reininghaus, J., Huber, S., Bauer, U., Tu, M. and Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning. Available at arXiv:1412.6821.
[45] Sousbie, T., Pichon, C. and Kawahara, H. (2011). The persistent cosmic web and its filamentary structure. Mon. Not. R. Astron. Soc.414 384–403.
[46] Turner, K., Mukherjee, S. and Boyer, D. M. (2014). Persistent homology transform for modeling shapes and surfaces. Inf. Inference3 310–344. · Zbl 06840289
[47] Turner, K., Mileyko, Y., Mukherjee, S. and Harer, J. (2014). Frechet means for distributions of persistence diagrams. Discrete Comput. Geom.52 44–70. · Zbl 1296.68182
[48] Van Quyen, M. L., Martinerie, J., Navarro, V., Baulac, M. and Varela, F. J. (2001). Characterizing neurodynamic changes before seizures. J. Clin. Neurophysiol.18 191–208.
[49] Worsley, K. J. (1995). Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Statist.23 640–669. · Zbl 0898.62120
[50] Zhu, X.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.