##
**Analysing plant closure effects using time-varying mixture-of-experts Markov chain clustering.**
*(English)*
Zbl 1405.62239

Summary: In this paper we study data on discrete labor market transitions from Austria. In particular, we follow the careers of workers who experience a job displacement due to plant closure and observe – over a period of 40 quarters – whether these workers manage to return to a steady career path. To analyse these discrete-valued panel data, we apply a new method of Bayesian Markov chain clustering analysis based on inhomogeneous first order Markov transition processes with time-varying transition matrices. In addition, a mixture-of-experts approach allows us to model the probability of belonging to a certain cluster as depending on a set of covariates via a multinomial logit model. Our cluster analysis identifies five career patterns after plant closure and reveals that some workers cope quite easily with a job loss whereas others suffer large losses over extended periods of time.

### MSC:

62P25 | Applications of statistics to social sciences |

62M02 | Markov processes: hypothesis testing |

62H30 | Classification and discrimination; cluster analysis (statistical aspects) |

### Keywords:

transition data; Markov chain Monte Carlo; multinomial logit; panel data; inhomogeneous Markov chains; clustering
PDF
BibTeX
XML
Cite

\textit{S. Frühwirth-Schnatter} et al., Ann. Appl. Stat. 12, No. 3, 1796--1830 (2018; Zbl 1405.62239)

### References:

[1] | Aitkin, M. and Alfó, M. (1998). Regression models for binary longitudinal responses. Stat. Comput.8 289–307. |

[2] | Altman, R. M. (2007). Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting. J. Amer. Statist. Assoc.102 201–210. · Zbl 1284.62803 |

[3] | Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics49 803–821. · Zbl 0794.62034 |

[4] | Bartolucci, F., Bacci, S. and Pennoni, F. (2014). Longitudinal analysis of self-reported health status by mixture latent auto-regressive models. J. R. Stat. Soc. Ser. C. Appl. Stat.63 267–288. |

[5] | Cadez, I., Heckerman, D., Meek, C., Smyth, P. and White, S. (2003). Model-based clustering and visualization of navigation patterns on a web site. Data Min. Knowl. Discov.7(4) 399–424. |

[6] | Couch, K., Jolley, N. and Placzek, D. (2010). Earnings impact of job displacement revisited. Am. Econ. Rev.100 572–589. |

[7] | Del Bono, E., Weber, A. and Winter-Ebmer, R. (2012). Clash of career and family: Fertility decisions after job displacement. J. Eur. Econ. Assoc.10 659–683. |

[8] | Dias, J. G. and Vermunt, J. K. (2007). Latent class modeling of website users’ search patterns: Implications for online market segmentation. J. Retail. Consum. Serv.14 359–368. |

[9] | Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B56 363–375. · Zbl 0796.62028 |

[10] | Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd ed. Oxford Statistical Science Series25. Oxford Univ. Press, Oxford. · Zbl 1031.62002 |

[11] | Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed. Wiley Series in Probability and Statistics: Texts and References Section. Wiley, New York. With 1 IBM-PC floppy disk (3.5 inch; DD). |

[12] | Fallick, B. (1996). A review of the recent empirical literature on displaced workers. Ind. Labor Relat. Rev.50 5–16. |

[13] | Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. J. Amer. Statist. Assoc.97 611–631. · Zbl 1073.62545 |

[14] | Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer, New York. |

[15] | Frühwirth-Schnatter, S. (2011). Panel data analysis: A survey on model-based clustering of time series. Adv. Data Anal. Classif.5 251–280. · Zbl 1274.62591 |

[16] | Frühwirth-Schnatter, S. and Frühwirth, R. (2010). Data augmentation and MCMC for binary and multinomial logit models. In Statistical Modelling and Regression Structures (T. Kneib and G. Tutz, eds.) 111–132. Physica-Verlag/Springer, Heidelberg. Also available at http://www.ifas.jku.at/ifas/content/e114480, IFAS Research Paper Series 2010-48. |

[17] | Frühwirth-Schnatter, S. and Kaufmann, S. (2008). Model-based clustering of multiple time series. J. Bus. Econom. Statist.26 78–89. |

[18] | Frühwirth-Schnatter, S., Pamminger, C., Weber, A. and Winter-Ebmer, R. (2012). Labor market entry and earnings dynamics: Bayesian inference using mixtures-of-experts Markov chain clustering. J. Appl. Econometrics27 1116–1137. |

[19] | Frühwirth-Schnatter, S., Pamminger, C., Weber, A. and Winter-Ebmer, R. (2016). Mothers’ long-run career patterns after first birth. J. Roy. Statist. Soc. Ser. A179 707–725. |

[20] | Frydman, H. (2005). Estimation in the mixture of Markov chains moving with different speeds. J. Amer. Statist. Assoc.100 1046–1053. · Zbl 1117.62337 |

[21] | Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo. Stochastic Simulation for Bayesian Inference, 2nd ed. Texts in Statistical Science Series. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1137.62011 |

[22] | Gollini, I. and Murphy, T. B. (2014). Mixture of latent trait analyzers for model-based clustering of categorical data. Stat. Comput.24 569–588. · Zbl 1325.62122 |

[23] | Goodman, L. A. (1961). Statistical methods for the mover-stayer model. J. Amer. Statist. Assoc.56 841–868. |

[24] | Gormley, I. C. and Murphy, T. B. (2008). A mixture of experts model for rank data with applications in election studies. Ann. Appl. Stat.2 1452–1477. · Zbl 1454.62498 |

[25] | Heckman, J. (1981). The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. In Structural Analysis of Discrete Data with Econometric Applications (C. F. Manski and D. McFadden, eds.) 179–195. MIT Press, Cambridge, MA. |

[26] | Huttunen, K., Moen, J. and Salvanes, K. G. (2011). How destructive is creative destruction? Effects of job loss on job mobility, withdrawal and income. J. Eur. Econ. Assoc.9 840–870. |

[27] | Ichino, A., Schwerdt, G., Winter-Ebmer, R. and Zweimüller, J. (2017). Too old to work, too young to retire? J. Econ. Ageing9 14–29. |

[28] | Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econ. Stat.86 4–29. |

[29] | Jacobson, L. S., LaLonde, R. J. and Sullivan, D. G. (1993). Earnings losses of displaced workers. Am. Econ. Rev.83 685–709. |

[30] | Jacobson, L. S., LaLonde, R. J. and Sullivan, D. G. (2005). Estimating the returns to community college schooling for displaced workers. J. Econometrics125 271–304. · Zbl 1334.62220 |

[31] | Juárez, M. A. and Steel, M. F. J. (2010). Model-based clustering of non-Gaussian panel data based on skew-\(t\) distributions. J. Bus. Econom. Statist.28 52–66. · Zbl 1198.62097 |

[32] | Maruotti, A. and Rocci, R. (2012). A mixed non-homogeneous hidden Markov model for categorical data, with application to alcohol consumption. Stat. Med.31 871–886. |

[33] | McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of longitudinal data. Canad. J. Statist.38 153–168. · Zbl 1190.62120 |

[34] | Pamminger, C. and Frühwirth-Schnatter, S. (2010). Model-based clustering of categorical time series. Bayesian Anal.5 345–368. · Zbl 1330.62256 |

[35] | Pamminger, C. and Tüchler, R. (2011). A Bayesian analysis of female wage dynamics using Markov chain clustering. Austr. J. Stat.40 281–296. |

[36] | Peng, F., Jacobs, R. A. and Tanner, M. A. (1996). Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition. J. Amer. Statist. Assoc.91 953–960. · Zbl 0882.62022 |

[37] | Ramoni, M., Sebastiani, P. and Cohen, P. (2002). Bayesian clustering by dynamics. Mach. Learn.47 91–121. · Zbl 1012.68154 |

[38] | Ruhm, C. J. (1991). Are workers permanently scarred by job displacements? Am. Econ. Rev.81 319–324. |

[39] | Schwerdt, G., Ichino, A., Ruf, O., Winter-Ebmer, R. and Zweimüller, J. (2010). Does the color of the collar matter? Employment and earnings after plant closure. Econom. Lett.108 137–140. |

[40] | Shirley, K. E., Small, D. S., Lynch, K. G., Maisto, S. A. and Oslin, D. W. (2010). Hidden Markov models for alcoholism treatment trial data. Ann. Appl. Stat.4 366–395. · Zbl 1189.62176 |

[41] | Skrondal, A. and Rabe-Hesketh, S. (2014). Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity. J. R. Stat. Soc. Ser. C. Appl. Stat.63 211–237. |

[42] | Sullivan, D. and von Wachter, T. (2009). Job displacement and mortality: An analysis using administrative data. Q. J. Econ.124 1265–1306. |

[43] | Winter-Ebmer, R. (2016). Long-term effects of unemployment: What can we learn from plant-closure studies? In Long-Term Unemployment After the Great Recession (S. Bentolila and M. Jansen, eds.) 33–42. CEPR Press, London. |

[44] | Wooldridge, J. M. (2005). Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl. Econometrics20 39–54. |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.