Abadias, Luciano; Alvarez, Edgardo; Lizama, Carlos Regularity properties of mild solutions for a class of Volterra equations with critical nonlinearities. (English) Zbl 1404.45001 J. Integral Equations Appl. 30, No. 2, 219-256 (2018). The authors study the nonlinear Volterra equation \[ u(t)= \int_0^t a(t-s)[Au(s)+ f(s,u(s))]\, ds + u_0, \quad t\geq 0, \] in a Banach space \(X\) where \(A\) is a densely defined sectorial linear operator that generates an integral resolvent \(S(t)\) with respect to the kernel \(a\in L^1_{\text{loc}}(\mathbb R_+)\) for which there is a function \(b\in L^1_{\text{loc}}(\mathbb R_+)\) such that \(\int_0^t a(t-s)b(s)\, ds =1\) when \(t>0\). The function \(f\) is assumed to be locally Lipschitz continuous with respect to the second variable, uniformly with respect to the first one. The authors prove the existence of a unique local mild solution, i.e., a function \(u\) satisfying \(u(t)= R(t)u_0 + \int_0^tS(t-s)f(s,u(s))\, ds\) (where \(R(t)x= \int_0^t b(t-s)S(s)x\, ds\)) and then show that this local solution can be extended to a maximal one that blows up unless it is a global one. For the case where \(a(t)= t^{\alpha-1}e^{-\delta t}/\Gamma(\alpha)\) and \(f\) satisfies certain additional assumptions, the authors establish some regularity results for the solution, e.g., that \(u(t)\in D((-A)^{1+\theta})\) for certain positive values of \(\theta\). Reviewer: Gustaf Gripenberg (Helsingfors) Cited in 2 Documents MSC: 45D05 Volterra integral equations 45N05 Abstract integral equations, integral equations in abstract spaces 34G20 Nonlinear differential equations in abstract spaces Keywords:Volterra integral equations; local and global; extension and blow up; mild solutions; \(\epsilon\)-regularity PDF BibTeX XML Cite \textit{L. Abadias} et al., J. Integral Equations Appl. 30, No. 2, 219--256 (2018; Zbl 1404.45001) Full Text: DOI Euclid References: [1] L. Abadias, C. Lizama and P.J. Miana, Sharp extensions and algebraic properties for solutions families of vector-valued differential equations, Banach J. Math. Anal. 10 (2016), 169–208. · Zbl 1380.47034 [2] J.M. Arrieta and A.N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc. 352 (1999), 285–310. · Zbl 0940.35119 [3] E. Bajlekova, The abstract Cauchy problem for the fractional evolution equation, Fract. Calc. Appl. Anal. 1 (1998), 255–270. [4] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304. · Zbl 0868.35058 [5] T. Burton, Volterra Integral and differential equations, Elsevier, Amsterdam, 2005. · Zbl 1075.45001 [6] Ph. Clément and G. Da Prato, Existence and regularity results for an integral equation with infinite delay in a Banach space, Int. Eq. Oper. Th. 11 (1988), 480–500. · Zbl 0668.45010 [7] Ph. Clément and E. Mitidieri, Qualitative properties of solutions of Volterra equations in Banach spaces, Israel J. Math. 64 (1988), 1–24. · Zbl 0675.45016 [8] B. De Andrade, A.N. Carvalho, P.M. Carvalho-Neto and P. Marín-Rubio, Semilinear fractional differential equations: Global solutions, critical nonlinearities and comparison results, Topol. Meth. Nonlin. Anal. 45 (2015), 439–467. · Zbl 1368.34018 [9] K.J. Engel and R. Nagel, One-Parameter semigroups for linear evolution equations, Grad. Texts Math. 194, Springer, New York, 2000. · Zbl 0952.47036 [10] A. Friedman, On integral equations of Volterra type, J. Anal. Math. 11 (1963), 381–413. · Zbl 0134.31502 [11] G. Gripenberg, On Volterra equations of the first kind, Int. Eq. Oper. Th. 3 (1980), 473–488. · Zbl 0445.45001 [12] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra integral and functional equations, in, Encyclopedia of mathematics and its applications34, Cambridge University Press, Cambridge, 1990. · Zbl 0695.45002 [13] B.H. Guswanto and T. Suzuki, Existence and uniqueness of mild solutions for fractional semilinear differential equations, Electr. J. Diff. Eq. 168 (2015), 1–16. · Zbl 1329.34008 [14] M. Haase, The functional calculus for sectorial operators, in Operator theory: Advances and applications169, Birkhauser, Basel, 2006. · Zbl 1101.47010 [15] A. Jawahdou, Mild solutions of functional semilinear evolution Volterra integrodifferential equations on an unbounded interval, Nonlin. Anal. 74 (2011), 7325–7332. · Zbl 1235.34203 [16] A.A.Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. · Zbl 1092.45003 [17] J. Kemppainen, J. Siljander, V. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb{R}^d\), Math. Ann. 366 (2016), 941–979. · Zbl 1354.35178 [18] K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett. 25 (2012), 808–812. · Zbl 1253.34016 [19] C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl. 243 (2000), 278–292. · Zbl 0952.45005 [20] C. Lizama and G. N’Guérékata, Mild solutions for abstract fractional differential equations, Appl. Anal. 92 (2013), 1731–1754. · Zbl 1276.34004 [21] Z.D. Mei, J.G. Peng and Y. Zhang, A characteristic of fractional resolvents, Fract. Calc. Appl. Anal. 16 (2013), 777–790. · Zbl 1314.34022 [22] Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comp. Math. Appl. 61 (2011), 860–870. · Zbl 1217.35206 [23] J. Prüss, Evolutionary integral equations and applications, Birkhauser/Springer, Basel, 2012. [24] C. Roberts, Characterizing the blow-up solutions for nonlinear Volterra integral equations, in Proceedings of the Second World Congress of Nonlinear Analysts, Part 2, Nonlin. Anal. 30 (1997), 923–933. · Zbl 0891.45003 [25] F.B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), 277–296. · Zbl 0419.47031 [26] ——–, Local existence and nonexistence for semilinear parabolic equations in \(L_p\), Indiana Univ. Math. J. 29 (1980), 79–102. · Zbl 0443.35034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.