Krasnoschok, Mykola; Pata, Vittorino; Vasylyeva, Nataliya Solvability of linear boundary value problems for subdiffusion equations with memory. (English) Zbl 1402.35304 J. Integral Equations Appl. 30, No. 3, 417-445 (2018). Summary: For \(\nu \in (0,1)\), the nonautonomous integro-differential equation \[ \mathbf {D}_{t}^{\nu }u-\mathcal {L}_{1}u-\int _{0}^{t}\mathcal {K}_{1}(t-s)\mathcal {L}_{2}u(\cdot ,s)\,ds =f(x,t) \] is considered here, where \(\mathbf {D}_{t}^{\nu }\) is the Caputo fractional derivative and \(\mathcal {L}_{1}\) and \(\mathcal {L}_{2}\) are uniformly elliptic operators with smooth coefficients dependent on time. The global classical solvability of the associated initial-boundary value problems is addressed. Cited in 12 Documents MSC: 35R11 Fractional partial differential equations 35C15 Integral representations of solutions to PDEs 45N05 Abstract integral equations, integral equations in abstract spaces Keywords:materials with memory; subdiffusion equations; Caputo derivatives; coercive estimates × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] A. Alsaedi, M. Kirane and R. Lassoued, Global existence and asymptotic behavior for a time fractional reaction-diffusion system, Comp. Math. Appl. 73 (2017), 951–958. · Zbl 1409.35210 [2] E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Mat. 131 (2015), 1–31. · Zbl 1325.76113 · doi:10.1007/s00211-014-0685-2 [3] J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep. 195 (1990), 127–293. [4] P. Cannarsa and D. Sforza, Global solution of abstract semilinear parabolic equations with memory effect, NoDEA Nonlin. Diff. Eqs. Appl. 10 (2003), 399–430. · Zbl 1052.35085 · doi:10.1007/s00030-003-1004-2 [5] M. Caputo, Models of flux in porous media with memory, Water Resources Res. 36 (2000), 693–705. [6] P. Clément, G. Gripenberg and S-O. Londen, Schauder estimates for equations with fractional derivative, Trans. Amer. Math. Soc. 352 (2000), 2239–2260. · Zbl 0947.35023 [7] P. Clément, S-O. Londen and G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Diff. Eqs. 196 (2004), 418–447. · Zbl 1058.35136 [8] P. Clément and J. Prüss, Global existence for semilinear parabolic Volterra equation, Math. Z. 209 (1992), 17–26. · Zbl 0724.45012 [9] B.D. Coleman and M.H. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys. 18 (1967), 199–208. [10] M.G. Crandall, S-O. Londen and J.A. Nohel, An abstract nonlinear Volterra integrodifferential equations, J. Math. Anal. Appl. 64 (1978), 701–735. · Zbl 0395.45023 · doi:10.1016/0022-247X(78)90014-8 [11] C.M. Dafermos, The mixed initial boundary value problem for the equations of nonlinear one dimensional visco-elasticity, J. Diff. Eqs. 6 (1969), 71–86. · Zbl 0218.73054 · doi:10.1016/0022-0396(69)90118-1 [12] G. Da Prato and M. Iannelli, Existence and regularity for a class of integrodifferential equation of parabolic type, J. Math. Anal. Appl. 112 (1985), 36–55. · Zbl 0583.45009 · doi:10.1016/0022-247X(85)90275-6 [13] G. Da Prato, M. Iannelli and E. Sinestrari, Regularity of solutions of a class of linear integrodifferential equations in Banach spaces, J. Int. Eqs. 8 (1985), 27–40. · Zbl 0576.45011 [14] W. Desch and R.K. Miller, Exponential stabilization of Volterra integrodifferential equations in Hilbert spaces, J. Diff. Eqs. 70 (1987), 366–389. · Zbl 0635.45029 · doi:10.1016/0022-0396(87)90157-4 [15] K. Diethelm, The analysis of fractional differential equations, Springer, Berlin, 2010. · Zbl 1215.34001 [16] H. Engler, Strong solutions of quasilinear integro-differential equations with singular kernels in several space dimensions, Electr. J. Diff. Eqs. 1995 (1995), 1–16. · Zbl 0813.45004 [17] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), 309–321, 797–804. · Zbl 0790.45009 [18] V.D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation, Australian J. Math. Anal. Appl. 3 (2006), 1–8. · Zbl 1093.35041 [19] G. Gilardi and U. Stefanelli, Existence for a doubly nonlinear Volterra equation, J. Math. Anal. Appl. 333 (2007), 839–862. · Zbl 1151.45003 · doi:10.1016/j.jmaa.2006.11.050 [20] C. Giorgi, V. Pata and A. Marzocchi, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlin. Diff. Eqs. Appl. 5 (1998), 333–354. · Zbl 0912.45009 · doi:10.1007/s000300050049 [21] G. Gripenberg, Nonlinear Volterra equations of parabolic type due to singular kernels, J. Diff. Eqs. 112 (1994), 154-169. · Zbl 0817.45010 · doi:10.1006/jdeq.1994.1098 [22] G. Gripenberg, S.-O. Londen and J. Prüss, On a fractional partial differential equations with dominating linear part, Math. Meth. Appl. Sci. 20 (1997), 1427–1448. · Zbl 0889.45010 [23] R. Hifler, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. · Zbl 0998.26002 [24] J. Kemppainen, J. Siljander, V. Vergara and R. Zacher, Decay estimates for time-fractional and other nonlocal in time subdiffusion equations in \(R^{d}\), Math. Ann. 366 (2016), 941–979. · Zbl 1354.35178 · doi:10.1007/s00208-015-1356-z [25] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud. 204, Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003 [26] A.N. Kochubei, A Cauchy problem for evolution equations of fractional order, J. Diff. Eqs. 25 (1989), 967–974. · Zbl 0696.34047 [27] ——–, Fractional order diffusion, J. Diff. Eqs. 26 (1990), 485–492. · Zbl 0729.35064 [28] M. Krasnoschok, Solvability in Hölder space of an initial-boundary value problem for the time-fractional diffusion equation, J. Math. Phys. Anal. Geom. 12 (2016), 48–77. · Zbl 1360.35034 · doi:10.15407/mag12.01.048 [29] M. Krasnoschok and N. Vasylyeva, On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud. 20 (2013), 589–619. · Zbl 1301.35201 [30] O.A. Ladyzhenskaia, V.A. Solonnikov and N.N. Ural’tseva, Linear and quasilinear parabolic equations, Academic Press, New York, 1968. · Zbl 0164.13002 [31] T.A.M. Langlands and B.I. Henry, Fractional chemotaxis diffusion equation, Phys. Rev. 81 (2010), 051102. [32] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progr. Nonlin. Diff. Eqs. Appl. 16, Birkhäuser Verlag, Basel, 1995. · Zbl 0816.35001 [33] A. Lunardi and E. Sinestrari, \(C^{α}\)-regularity for nonautonomous linear integrodifferential equations of parabolic type, J. Diff. Eqs. 63 (1986), 88–116. · Zbl 0596.45019 [34] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and fractional calculus in continuum mechanics, A. Garpinteri and F. Mainardi, eds., Springer-Verlag, New York, 1997. · Zbl 0917.73004 [35] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Resent developments in the description of anomalous transport by fractional dynamics, J. Phys. 37 (2004), 161–208. · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01 [36] G.M. Mophou and G.M. N’Guérékata, On a class of fractional differential equations in a Sobolev space, Appl. Anal. 91 (2012), 15–34. · Zbl 1237.49007 [37] M. Muslim and A.K. Nandakumaran, Existence and approximations of solutions to some fractional order functional integral equations, J. Int. Eqs. Appl. 22 (2010), 95–114. · Zbl 1189.26008 · doi:10.1216/JIE-2010-22-1-95 [38] R. Ponce, Hölder continuous solutions for fractional differential equatinos and maximal regularity, J. Diff. Eqs. 255 (2013), 3284–3304. · Zbl 1321.34104 [39] R. Ponce and V. Poblete, Maximal \(L_{p}-\) regularity for fractional differential equations on the line, Math. Nach., doi 10.1002/mana.201600175, 2017. · Zbl 1375.34117 [40] A.C. Pipkin, Lectrures on viscoelasticity theory, Appl. Math. Sci. 7 (1986). [41] J. Prüss, Evolutionary integral equations and applications, Mono. Math 87 (1993). · Zbl 0784.45006 [42] A.V. Pskhu, Partial differential equations of the fractional order, Nauka, Moscow, 2005. · Zbl 1193.35245 [43] M. Renardy, W.J. Hrasa and J.A. Nohel, Mathematical problems in viscoelacticity, Longman, Harlow, 1987. · Zbl 0719.73013 [44] K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara and A. Kusumi, Detection of non-Brownian diffusion in the cell membrance in single molecule tracking, Biophys. J. 88 (2005), 2266–2277. [45] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), 426–447. · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058 [46] F. Shen, W. Tan, Y. Zhao and T. Masuoka, The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model, Nonlin. Anal. 7 (2006), 1072–1080. · Zbl 1113.76016 · doi:10.1016/j.nonrwa.2005.09.007 [47] O. Staffans, Semigroups generated by a convolution equation, infinite dimensional systems, Lect. Notes Math. 1076 (1984). · Zbl 0539.34048 [48] W.C. Tan, W.X. Pan and M.Y. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int. J. Non-Lin. Mech. 38 (2003), 645–650. · Zbl 1346.76009 · doi:10.1016/S0020-7462(01)00121-4 [49] V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other non-local subdiffusion equations via energy methods, SIAM. J. Math. Anal. 47 (2015), 210–239. · Zbl 1317.45006 · doi:10.1137/130941900 [50] E. Weeks and D.Weitz, Subdiffusion and the cage effect studied near the colloidal glass transition, Chem. Phys. 284 (2002), 361–367. [51] M. Weiss, H. Hashimoto and T. Nilsson, Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy, Biophys. J. 84 (2003), 4043–4052. [52] H.-M. Yin, On parabolic Voltera equations in several space dimensions, SIAM J. Math. Anal. 22 (1991), 1723–1737. · Zbl 0745.45003 · doi:10.1137/0522106 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.