×

zbMATH — the first resource for mathematics

Generalized Robinson-Schensted-Knuth correspondence. (English. Russian original) Zbl 0698.05003
J. Sov. Math. 41, No. 2, 979-991 (1988); translation from Zap. Nauchn. Semin. Leningrad. Otd. Mat. Inst. Steklova 155, 156-175 (1986).
See the review in Zbl 0661.05004.

MSC:
05A05 Permutations, words, matrices
05C20 Directed graphs (digraphs), tournaments
06A06 Partial orders, general
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] G. de B. Robinson, ?On the representations of the symmetric group,? Am. J. Math.,60, 746?760 (1938). · JFM 64.0070.01
[2] C. Schensted, ?Longest increasing and decreasing subsequences,? Can. J. Math.,13, No. 2, 179?191 (1961). · Zbl 0097.25202 · doi:10.4153/CJM-1961-015-3
[3] D. E. Knuth, ?Permutation matrices and generalized Young tableaux,? Pac. J. Math.,34, 709?727 (1970). · Zbl 0199.31901 · doi:10.2140/pjm.1970.34.709
[4] G. James, Theory of Representations of Symmetric Groups [Russian translation], Moscow (1982).
[5] A. M. Vershik, ?Supplement of the editor of the translation,? in: G. James, Theory of Representations of Symmetric Groups [Russian translation], Moscow (1982).
[6] R. P. Stanley, ?Theory and application of plane partitions,? Studies in Appl. Math.,1, 167?188, 259?279 (1971). · Zbl 0225.05011 · doi:10.1002/sapm1971502167
[7] M.-P. Schützenberger, ?La correspondance de Robinson,? Lect. Notes Math.,579, 59?113 (1977). · Zbl 0398.05011 · doi:10.1007/BFb0090012
[8] G. Andrews, Theory of Partitions [Russian translation], Moscow (1982).
[9] C. Greene, ?An extension of Schensted’s theorem,? Adv. Math.,14, No. 2, 254?265 (1974). · Zbl 0303.05006 · doi:10.1016/0001-8708(74)90031-0
[10] C. Greene and D. Kleitman, ?The structure of Sperner k-families,? J. Combust. Theory (A),20, 41?68 (1976). · Zbl 0363.05006 · doi:10.1016/0097-3165(76)90077-7
[11] C. Greene, ?Some partitions associated with a partially ordered set,? J. Combust. Theory (A),20, 69?79 (1976). · Zbl 0323.06002 · doi:10.1016/0097-3165(76)90078-9
[12] S. V. Fomin, ?Finite partially ordered sets and Young diagrams,? Dokl. Akad. Nauk SSSR,243, No. 5, 1144?1147 (1978).
[13] D. Knuth, The Art of Computer Programming [Russian translation], Vol. 3, Sorting and Search, Moscow (1978).
[14] S. V. Kerov and A. M. Vershik, ?The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm,? SIAM J. Alg. Disc. Math.,7, No. 1, 116?124 (1986). · Zbl 0584.05004 · doi:10.1137/0607014
[15] A. M. Vershik and S. V. Kerov, ?Asymptotics of the Plancherel measure of the symmetric group and limit form of Young tableaux,? Dokl. Akad. Nauk SSSR,233, 1024?1027 (1977). · Zbl 0406.05008
[16] M. Aigner, Combinatorial Theory [Russian translation], Moscow (1982).
[17] G. Birkhoff, Lattice Theory [Russian translation], Moscow (1984).
[18] J. Riordan, Introduction to Combinatorial Analysis [Russian translation], Moscow (1963).
[19] M.-P. Schützenberger, ?Quelques remarques sur une construction de Schensted,? Math. Scand.,12, 117?128 (1963). · Zbl 0216.30202 · doi:10.7146/math.scand.a-10676
[20] R. P. Dilworth, ?A decomposition theorem for partially ordered sets,? Ann. Math.,51, 161?166 (1950). · Zbl 0038.02003 · doi:10.2307/1969503
[21] L. R. Ford and D. R. Fulkerson, Flows in Networks [Russian translation], Moscow (1963). · Zbl 0139.13701
[22] A. Aho, J. Hopcroft, and J. Ulman, Construction and Analysis of Computational Algorithms [Russian translation], Moscow (1979).
[23] R. P. Stanely, ?The Fibonacci lattice,? Fibonacci Quarterly,13, 215?232 (1975).
[24] A. M. Vershik and S. V. Kerov, ?Locally semisimple algebras. Combinatorial theory and the K0-functor,? in: Contemporary Problems of Mathematics. Latest Achievements. Results of Science and Technology [in Russian], Vol. 26, VINITI, Moscow (1985), pp. 3?56.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.