zbMATH — the first resource for mathematics

An application of descent to a classification theorem for toposes. (English) Zbl 0698.18003
In “An extension of the Galois theory of Grothendieck” [Mem. Am. Math. Soc. 309 (1984; Zbl 0541.18002)], A. Joyal and M. Tierney proved a classification theorem for bounded toposes over a base topos \({\mathcal S}\) using descent theory. Their result states that every such topos \({\mathcal E}\) is equivalent to one of the form \({\mathcal B}G\), the topos of √©tale G-spaces, where G is a localic groupoid. These toposes \({\mathcal B}G\) have been called the “classifying topos of G” by I. Moerdijk [“The classifying topos of a continuous groupoid. I, Trans. Am. Math. Soc. 310, No.2, 629-668 (1988)], for if G is a discrete group in the topos of sets, then \({\mathcal B}G\) classifies principal G-bundles. This cannot always be the case, because if G is a connected topological group, then \({\mathcal B}G\) reduces to Sets.
The paper under review considers the case of an arbitrary spatial groupoid G. To G one can associate in a canonical fashion a new spatial groupoid \(\hat G\) such that \({\mathcal B}G\simeq {\mathcal B}\hat G\). Then, it is shown how \({\mathcal B}G\) can be viewed as classifying principal \(\hat G- \)bundles, where the notion of G-bundle is suitably generalized from groups to spatial groupoids. The techniques employed are those of descent theory and the theory of stacks and stack completions. Two different descriptions of the stack completion of G are utilized to analyze the topos \({\mathcal B}G\) and establish the connection with principal bundles.
Reviewer: K.I.Rosenthal

18B25 Topoi
18D35 Structured objects in a category (MSC2010)
18F15 Abstract manifolds and fiber bundles (category-theoretic aspects)
Full Text: DOI
[1] Moerdijk, The classifying topos of a continuous groupoid I, II (1986) · Zbl 0717.18001
[2] Moerdijk, Math. Proc. Cambridge Philos. Soc. 103 pp 97– (1988)
[3] Joyal, An Extension of the Galois Theory of Grothendieck (1984) · Zbl 0541.18002
[4] DOI: 10.1007/BFb0077118 · Zbl 0172.02103 · doi:10.1007/BFb0077118
[5] Demazure, Groupes Algebriques (1970)
[6] DOI: 10.1080/00927877608822133 · Zbl 0358.18011 · doi:10.1080/00927877608822133
[7] Bunge, Cahiers Topologie Geom. Diff?rentielle Cat?goriques 20 pp 401– (1979)
[8] Bunge, Cahiers Topologie Geom. Diff?rentielle Cat?goriques 20 pp 373– (1979)
[9] Bourn, Cahiers Topologie Geom. Diff?rentielle Cat?goriques 28 pp 197– (1987)
[10] Bourn, Cahiers Topologie Geom. Diff?rentielle Cat?goriques 21 pp 403– (1980)
[11] DOI: 10.1007/BFb0058580 · doi:10.1007/BFb0058580
[12] Artin, Th?orie des Topos et Cohomologie ?tale des Sch?mas 269 (1972)
[13] Johnstone, Aspects of Topology pp 77– (1985) · doi:10.1017/CBO9781107359925.004
[14] Johnstone, Stone Spaces (1982)
[15] Johnstone, Topos Theory (1977)
[16] Hyland, The discrete objects in the effective topos (1987) · Zbl 0703.18002
[17] Gabriel, Calculus of Fractions and Homotopy Theory (1967) · Zbl 0186.56802 · doi:10.1007/978-3-642-85844-4
[18] DOI: 10.1016/0022-4049(82)90094-9 · Zbl 0487.18015 · doi:10.1016/0022-4049(82)90094-9
[19] Giraud, Cohomologie Non-abelienne (1971)
[20] Husemoller, Fibre Bundles (1966) · doi:10.1007/978-1-4757-4008-0
[21] Duskin, Non-abelian cohomology in a topos · Zbl 0496.18009
[22] Duskin, Cahiers Topologie Geom. Diff?rentielle Cat?goriques 23 pp 165– (1982)
[23] Steenrod, The Topology of Fibre Bundles (1951) · Zbl 0054.07103 · doi:10.1515/9781400883875
[24] Pitts, On product and change of base for toposes · Zbl 0574.18003
[25] DOI: 10.1007/BFb0061361 · doi:10.1007/BFb0061361
[26] Par?, J. Pure Appl. Alg. 19 pp 305– (1980)
[27] Moerdijk, Toposes and groupoids (1988) · Zbl 0659.18008 · doi:10.1007/BFb0081366
[28] Moerdijk, Compositio Math. 58 pp 45– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.