×

The stability of matter: From atoms to stars. (English) Zbl 0698.35135

This article reviews some results on some aspects of classical Quantum Theory, namely the questions of the so-called “stability of matter”. It is an extremely pleasant presentation of the subject which begins with a short review and introduction to the models. Asymptotic results concerning large atoms in bulk electronic matter are given and explained. Finally, some relativistic corrections are considered.
Reviewer: P.-L.Lions

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
81V70 Many-body theory; quantum Hall effect
85A15 Galactic and stellar structure
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. H. Lieb American Institute of Physics Handbook, McGraw-Hill, New York, 1972 third ed., p. 7-6.
[2] P. Armbruster and G. Münzenberg, Creating superheavy elements, Scientific American 260 (1989), 66-72.
[3] J. F. G. Auchmuty and Richard Beals, Variational solutions of some nonlinear free boundary problems, Arch. Rational Mech. Anal. 43 (1971), 255 – 271. · Zbl 0225.49013
[4] M. Born, Quantenmechanik der Stossvorgânge, Z. Phys. 38 (1926), 803-827. · JFM 52.0973.04
[5] S. Chandrasekhar, The maximum mass of ideal white dwarfs, Astrophys. J. S. Chandrasekhar, 74 (1931), 81-82. See also On stars, their evolution and stability, Rev. Mod. Phys. 56(1984), 137-147. · Zbl 0002.23502
[6] Joseph G. Conlon, The ground state energy of a classical gas, Comm. Math. Phys. 94 (1984), no. 4, 439 – 458. · Zbl 0946.82501
[7] Joseph G. Conlon, Elliott H. Lieb, and Horng-Tzer Yau, The \?^{7/5} law for charged bosons, Comm. Math. Phys. 116 (1988), no. 3, 417 – 448.
[8] Ingrid Daubechies, An uncertainty principle for fermions with generalized kinetic energy, Comm. Math. Phys. 90 (1983), no. 4, 511 – 520. · Zbl 0946.81521
[9] Ingrid Daubechies and Elliott H. Lieb, One-electron relativistic molecules with Coulomb interaction, Comm. Math. Phys. 90 (1983), no. 4, 497 – 510. · Zbl 0946.81522
[10] F. J. Dyson, Ground state energy of a finite system of charged particles, J. Math. Phys. 8 (1967), 1538-1545.
[11] F. J. Dyson and A. Lenard, Stability of matter. I and II, J. Math. Phys. 8 (1967), 423-434; ibid 9 (1968), 698-711. · Zbl 0948.81665
[12] Charles L. Fefferman, Stability of matter with magnetic fields, Partial differential equations and their applications (Toronto, ON, 1995) CRM Proc. Lecture Notes, vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 119 – 133. · Zbl 0880.32008
[13] E. Fermi, Un metodo statistico per la determinazione di alcune priorieta del’atomo, Atti Acad. Naz. Lincei, Rend. 6 (1927), 602-607.
[14] Ira W. Herbst, Spectral theory of the operator (\?²+\?²)^{1/2}-\?\?²/\?, Comm. Math. Phys. 53 (1977), no. 3, 285 – 294. · Zbl 0375.35047
[15] Peter Hertel, Heide Narnhofer, and Walter Thirring, Thermodynamic functions for fermions with gravostatic and electrostatic interactions, Comm. Math. Phys. 28 (1972), no. 2, 159 – 176.
[16] P. Hertel and W. Thirring, Free energy of gravitating fermions, Comm. Math. Phys. 24 (1971), no. 1, 22 – 36. · Zbl 0227.47034
[17] J. H. Jeans, The mathematical theory of electricity and magnetism, Cambridge Univ. Press, Cambridge, third edition, 1915, p. 168. · JFM 39.0951.05
[18] M. Jammer, The conceptual development of quantum mechanics, McGraw Hill, New York, 1966.
[19] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0148.12601
[20] H. Kalf, U.-W. Schmincke, J. Walter, and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 182 – 226. Lecture Notes in Math., Vol. 448. · Zbl 0311.47021
[21] A. Lenard, Lectures on the Coulomb stability problem, Lecture Notes in Physics 20 (1973), 114-135.
[22] Elliott H. Lieb, The stability of matter, Rev. Modern Phys. 48 (1976), no. 4, 553 – 569.
[23] Elliott H. Lieb, On characteristic exponents in turbulence, Comm. Math. Phys. 92 (1984), no. 4, 473 – 480. · Zbl 0598.76054
[24] Elliott H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys. 53 (1981), no. 4, 603 – 641. , https://doi.org/10.1103/RevModPhys.53.603 Elliott H. Lieb, Erratum: ”Thomas-Fermi and related theories of atoms and molecules”, Rev. Modern Phys. 54 (1982), no. 1, 311. · Zbl 1049.81679
[25] E. H. Lieb, Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. 29A (1984), 3018-3028. A summary is in Phys. Rev. Lett. 52 (1984), 315-317.
[26] Elliott H. Lieb, The \?^{5/3} law for bosons, Phys. Lett. A 70 (1979), no. 2, 71 – 73.
[27] Elliott H. Lieb and Joel L. Lebowitz, The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei, Advances in Math. 9 (1972), 316 – 398. · Zbl 1049.82501
[28] E. H. Lieb and S. Oxford, An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem. 19 (1981), 427-439.
[29] Elliott H. Lieb and Barry Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math. 23 (1977), no. 1, 22 – 116. · Zbl 0938.81568
[30] E. H. Lieb and W. E. Thirring, Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35 ( 1975), 687-689. Errata ibid. 35(1975), 1116.
[31] E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, , Princeton Univ. Press, Princeton, New Jersey, 1976, pp. 269-330. · Zbl 0342.35044
[32] Elliott H. Lieb and Walter E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics 155 (1984), no. 2, 494 – 512.
[33] Elliott H. Lieb and Horng-Tzer Yau, The stability and instability of relativistic matter, Comm. Math. Phys. 118 (1988), no. 2, 177 – 213. · Zbl 0686.35099
[34] Elliott H. Lieb and Horng-Tzer Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), no. 1, 147 – 174. · Zbl 0641.35065
[35] Joachim Messer, Temperature dependent Thomas-Fermi theory, Lecture Notes in Physics, vol. 147, Springer-Verlag, Berlin-New York, 1981. · Zbl 0476.35065
[36] W. Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren, Z. Phys. 31 (1925), 765-785. · JFM 51.0742.03
[37] R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of equation of state, Phys. Rev. 187 (1969), 1767-1783.
[38] E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 79 (1926), 361-376. See also ibid. 79 (1926), 489-527; 80 (1926), 437-490; 81 (1926), 109-139. · JFM 52.0965.08
[39] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs and neutron stars, Wiley, New York, 1983.
[40] L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc. 23(1927), 542-548. · JFM 53.0868.04
[41] Walter Thirring, Lehrbuch der mathematischen Physik. 4, Springer-Verlag, Vienna, 1980 (German). Quantenmechanik grosser Systeme. [Quantum mechanics of large systems]. Walter Thirring, A course in mathematical physics. Vol. 4, Springer-Verlag, New York-Vienna, 1983. Quantum mechanics of large systems; Translated from the German by Evans M. Harrell.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.