Construction of an epimorphism of projective planes over Cartesian groups. (English) Zbl 0698.51001

If \((L,+,e,\leq)\) is an ordered loop and T is a Cartesian field with commutative addition, then the set D of all maps f: \(L\to T\) with well- ordered support, taken with pointwise addition and the product \((f\cdot g)(z)=\sum_{x+y=z}f(x)g(y)\) is again a Cartesian field. Put \(\phi (f)=f(e)\) if \(f(x)=0\) for all \(x<e\) and \(\phi (f)=\infty\) otherwise. The author shows that \(\phi\) : \(D\to T\cup \{\infty \}\) is a place.
Reviewer: H.Salzmann


51A10 Homomorphism, automorphism and dualities in linear incidence geometry
Full Text: EuDML


[1] Vanžurová A.: Homomorphisms of projective planes over quasifields and nearfields. Acta Univ. Palac. Olomucensis, fac.rer.nat. 69 (1981), 35-40. · Zbl 0504.51005
[2] Vanžurová A.: Places of alternative fields. AUPO 69 (1981), 41-46. · Zbl 0481.17007
[3] Vanžurová A.: On generalized formal power series. AUPO, to appear. · Zbl 0635.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.