zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical implementation of the sinc-Galerkin method for second-order hyperbolic equations. (English) Zbl 0698.65069
Summary: A fully Galerkin method in both space and time is developed for the second-order, linear hyperbolic problem. Sinc basis functions are used and error bounds are given which show the exponential convergence rate of the method. The matrices necessary for the formulation of the discrete system are easily assembled. They require no numerical integrations (merely point evaluations) to be filled. The discrete problem is formulated in two different ways and solution techniques for each are described. Consideration of the two formulations is motivated by the computational architecture available. Each has advantages for the appropriate hardware. Numerical results reported show that if $2N+1$ basis functions are used then the exponential convergence rate 0[exp(-$\kappa$ $\sqrt{N})]$, $\kappa >0$, is attained for both analytic and singular problems.

65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
35L20Second order hyperbolic equations, boundary value problems
Full Text: DOI