×

zbMATH — the first resource for mathematics

Further results on the observer design problem. (English) Zbl 0698.93004
Summary: The observer design problem for nonlinear systems is considered. Sufficient Lyapunov-like conditions are presented for the existence of a nonlinear observer. The theory we develop considerably improves and extends the results of our recent work [ibid. 13, No.2, 135-142 (1989; Zbl 0684.93006)].

MSC:
93B07 Observability
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Artstein, Z., Stabilization with relaxed controls, Nonlinear anal. TMA, 7, 11, 1163-1173, (1983) · Zbl 0525.93053
[2] Baumann, W.; Rugh, W., Feedback control of nonlinear systems by extended linearization, IEEE trans. automat. control, 31, 40-47, (1986) · Zbl 0582.93031
[3] Bestle, D.; Zeitz, M., Canonical form observer design for nonlinear time variable systems, Internat. J. control, 38, 419-431, (1983) · Zbl 0521.93012
[4] Corless, M.J.; Leitmann, G., Continuous state feedback guaranteering uniform ultimate boundedness for uncertain dynamic systems, IEEE trans. automat. control, 26, 1139-1144, (1981) · Zbl 0473.93056
[5] Derese, I.A., Bilinear observers for bilinear systems, IEEE trans. automat. control, 26, 590-592, (1981) · Zbl 0488.93010
[6] Gauthier, J.P.; Kazakos, D., Observability and observers for nonlinear systems, () · Zbl 0635.93013
[7] Grassall, O.M.; Isidori, A., An existence theorem for observers of bilinear systems, IEEE trans. automat. control, 26, 1299-1300, (1981) · Zbl 0479.93015
[8] Hammouri, H.; Gauthier, J.Q., Bilinearization up to output injection, Systems control lett., 11, 139-149, (1988) · Zbl 0648.93024
[9] Kou, S.R.; Elliot, D.L.; Tarn, T.J., Exponential observers for nonlinear dynamic systems, Internat. J. control, 29, 204-216, (1975) · Zbl 0319.93049
[10] Krener, A.J.; Respondek, W., Nonlinear observers and linearizable error dynamics, SIAM J. control optim., 23, 197-216, (1985) · Zbl 0569.93035
[11] Levine, J.; Marino, R., Nonlinear system immersion, observers and finite-dimensional filters, Systems control lett., 7, 133-142, (1986) · Zbl 0592.93030
[12] Nicosia, S.; Tomei, P.; Tornambe, A., Approximate asymptotic observers for a class of nonlinear systems, (), 157-162
[13] van der Schaft, A.J., On nonlinear observers, IEEE trans. automat. control, 30, 1254-1256, (1986) · Zbl 0578.93009
[14] Tsinias, J., Observer design for nonlinear systems, Systems control lett., 13, 135-142, (1989) · Zbl 0684.93006
[15] Tsinias, J., Sufficient Lyapunov-like conditions for stabilization, Math. control signals systems, 2, 343-357, (1989) · Zbl 0688.93048
[16] Tsinias, J.; Kalouptsidis, N., Output feedback stabilization, IEEE trans. automat. control, (1990), to appear · Zbl 0723.93054
[17] Walcott, B.L.; Zak, S.H., State observation of nonlinear uncertain dynamical systems, IEEE trans. automat. control, 32, 166-170, (1987) · Zbl 0618.93019
[18] Williamson, D., Observation of bilinear systems with application to biological control, Automatica, 13, 243-254, (1977) · Zbl 0351.93008
[19] Wonham, W.W., Linear multivariable control, (1979), Springer New York · Zbl 0424.93001
[20] Xia, X.; Gao, W., On exponential observers for nonlinear systems, Systems control lett., 11, 319-325, (1988) · Zbl 0654.93010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.