zbMATH — the first resource for mathematics

Topics on modular Galois representations modulo prime powers. (English) Zbl 1426.11046
Böckle, Gebhard (ed.) et al., Algorithmic and experimental methods in algebra, geometry, and number theory. Cham: Springer. 741-763 (2017).
Summary: This article surveys modularity, level raising and level lowering questions for two-dimensional representations modulo prime powers of the absolute Galois group of the rational numbers. It contributes some new results and describes algorithms and a database of modular forms orbits and higher congruences.
For the entire collection see [Zbl 1394.14002].

11F33 Congruences for modular and \(p\)-adic modular forms
11F80 Galois representations
ArtinAlgebras; Magma
Full Text: DOI arXiv
[1] R. Adibhatla, J. Manoharmayum, Higher congruence companion forms. Acta Arith. 156(2), 159-175 (2012) · Zbl 1282.11041
[2] R. Adibhatla, P. Tsaknias, A characterisation of ordinary modular eigenforms with CM, in \(Arithmetic and Geometry\). London Mathematical Society Lecture Note Series, vol. 420 (Cambridge University Press, Cambridge, 2015), pp. 24-35 · Zbl 1379.11052
[3] G. Böckle, On the density of modular points in universal deformation spaces. Am. J. Math. 123(5), 985-1007 (2001) · Zbl 0984.11025
[4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24(3-4), 235-265 (1997). Computational algebra and number theory (London, 1993) · Zbl 0898.68039
[5] K. Buzzard, Questions about slopes of modular forms. Astérisque 298, 1-15 (2005). Automorphic forms. I · Zbl 1122.11025
[6] M. Camporino, A. Pacetti, Congruences between modular forms modulo prime powers (2013). arXiv:1312.4925
[7] I. Chen, I. Kiming, G. Wiese, On modular Galois representations modulo prime powers. Int. J. Number Theory 9(1), 91-113 (2013) · Zbl 1305.11047
[8] S.V. Deo, Structure of Hecke algebras of modular forms modulo \(p\). Algebra Number Theory 11(1), 1-38 (2017) · Zbl 1361.11038
[9] F. Diamond, M. Flach, L. Guo, The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. Éc. Norm. Supér. (4) 37(5), 663-727 (2004) · Zbl 1121.11045
[10] N. Dummigan, Level-lowering for higher congruences of modular forms (2015). http://neil-dummigan.staff.shef.ac.uk/levell8.pdf
[11] B. Edixhoven, The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563-594 (1992) · Zbl 0777.11013
[12] M. Emerton, Local-global compatibility in the \(p\)-adic Langlands programme for \(\(\text {GL}_{2/\mathbb {Q}}\)\) (2011). http://www.math.uchicago.edu/ emerton/pdffiles/lg.pdf
[13] C. Khare, R. Ramakrishna, Lifting torsion Galois representations. Forum Math. Sigma 3, e14, 37 (2015) · Zbl 1400.11107
[14] C. Khare, J.P. Wintenberger, Serre’s modularity conjecture. I. Invent. Math. 178(3), 485-504 (2009) · Zbl 1304.11041
[15] I. Kiming, N. Rustom, G. Wiese, On certain finiteness questions in the arithmetic of modular forms. J. Lond. Math. Soc. 94(2), 479-502 (2016) · Zbl 1398.11082
[16] M. Kisin, The Fontaine-Mazur conjecture for GL_{2}. J. Am. Math. Soc. 22(3), 641-690 (2009) · Zbl 1251.11045
[17] K.A. Ribet, On modular representations of \(\(\text {Gal}(\overline {\mathbf {Q}}/{\mathbf {Q}})\)\) arising from modular forms. Invent. Math. 100(2), 431-476 (1990) · Zbl 0773.11039
[18] K.A. Ribet, Raising the levels of modular representations, in \(Séminaire de Théorie des Nombres, Paris 1987-88\). Progress in Mathematics, vol. 81 (Birkhäuser Boston, Boston, MA, 1990), pp. 259-271
[19] J. Tilouine, Hecke algebras and the Gorenstein property, in \(Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995)\) (Springer, New York, 1997), pp. 327-342 · Zbl 1155.11330
[20] P. Tsaknias, On higher congruences of modular Galois representations, Ph.D. thesis, University of Sheffield, 2009
[21] X.T.i. Ventosa, G. Wiese, Computing congruences of modular forms and Galois representations modulo prime powers, in \(Arithmetic, Geometry, Cryptography and Coding Theory 2009\). Contemporary Mathematics, vol. 521 (American Mathematical Society, Providence, RI, 2010), pp. 145-166 · Zbl 1219.11069
[22] G. Wiese, Multiplicities of Galois representations of weight one. Algebra Number Theory 1(1), 67-85 (2007). With an appendix by Niko Naumann · Zbl 1171.11036
[23] G. Wiese, Magma package ArtinAlgebras (2008). http://math.uni.lu/ wiese/programs/ArtinAlgebras
[24] G. Wiese, Magma package pAdicAlgebras (2014). http://math.uni.lu/ wiese/programs/pAdicAlgebras
[25] G. Wiese, Magma package
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.