Meiri, Chen; Puder, Doron [Carmon, Dan] The Markoff group of transformations in prime and composite moduli. With an appendix by Dan Carmon. (English) Zbl 1447.11049 Duke Math. J. 167, No. 14, 2679-2720 (2018). Summary: The Markoff group of transformations is a group \(\Gamma\) of affine integral morphisms, which is known to act transitively on the set of all positive integer solutions to the equation \(x^2+y^2+z^2=xyz\). The fundamental strong approximation conjecture for the Markoff equation states that for every prime \(p\), the group \(\Gamma\) acts transitively on the set \(X^\ast(p)\) of nonzero solutions to the same equation over \(\mathbb{Z}/p\mathbb{Z}\). Recently, Bourgain, Gamburd, and Sarnak [J. Bourgain et al., C. R., Math., Acad. Sci. Paris 354, No. 2, 131–135 (2016; Zbl 1378.11043)] proved this conjecture for all primes outside a small exceptional set. Here, we study a group of permutations obtained by the action of \(\Gamma\) on \(X^\ast(p)\), and show that for most primes, it is the full symmetric or alternating group. We use this result to deduce that \(\Gamma\) acts transitively also on the set of nonzero solutions in a big class of composite moduli. Finally, our result also translates to a parallel in the case \(r=2\) of a well-known theorem of M. Evans [Math. Proc. Camb. Philos. Soc. 113, 9–22 (1993; Zbl 0781.20021)] and R. Gilman [Can. J. Math. 29, 541–551 (1977; Zbl 0332.20010)] regarding “\(T_r\)-systems” of \(\mathrm{PSL}(2,p)\). Cited in 4 Documents MSC: 11D25 Cubic and quartic Diophantine equations 20B15 Primitive groups 20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures 20E05 Free nonabelian groups Keywords:Markoff equation; Markoff triples; \(T\)-systems Citations:Zbl 1378.11043; Zbl 0781.20021; Zbl 0332.20010 PDF BibTeX XML Cite \textit{C. Meiri} and \textit{D. Puder}, Duke Math. J. 167, No. 14, 2679--2720 (2018; Zbl 1447.11049) Full Text: DOI arXiv Euclid References: [1] J. Bourgain, A. Gamburd, and P. Sarnak, Markoff triples and strong approximation, C. R. Math. Acad. Sci. Paris 354 (2016), 131–135. · Zbl 1378.11043 [2] J. Bourgain, A. Gamburd, and P. Sarnak, Markoff surfaces and strong approximation, I, preprint, arXiv:1607.01530v1 [math.NT]. · Zbl 1378.11043 [3] A. Cerbu, E. Gunther, M. Magee, and L. Peilen, The cycle structure of a Markoff automorphism over finite fields, preprint, arXiv:1610.07077v2 [math.NT]. [4] J. D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts in Math. 163, Springer, New York, 1996. [5] P. Erdős and M. R. Murty, “On the order of \(a\pmod{p}\)” in Number Theory (Ottawa, Ont., 1996), CRM Proc. Lecture Notes 19, Amer. Math. Soc., Providence, 1999, 87–97. [6] M. J. Evans. \(T\)-systems of certain finite simple groups, Math. Proc. Cambridge Philos. Soc. 113 (1993), 9–22. · Zbl 0781.20021 [7] K. Ford, The distribution of integers with a divisor in a given interval, Ann. of Math. (2) 168 (2008), 367–433. · Zbl 1181.11058 [8] S. Garion and A. Shalev, Commutator maps, measure preservation, and \(T\)-systems, Trans. Amer. Math. Soc. 361, no. 9 (2009), 4631–4651. · Zbl 1182.20015 [9] R. Gilman, Finite quotients of the automorphism group of a free group, Canad. J. Math. 29 (1977), 541–551. · Zbl 0332.20010 [10] R. Guralnick and K. Magaard, On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), 127–145. · Zbl 0911.20003 [11] A. Lubotzky, “Dynamics of \(\operatorname{Aut}(F_{N})\) actions on group presentations and representations” in Geometry, Rigidity, and Group Actions, Chicago Lectures in Math., Univ. Chicago Press, 2011, Chicago, 609–643. · Zbl 1266.20045 [12] A. M. Macbeath, “Generators of the linear fractional groups” in Number Theory (Houston, Tex., 1967), Proc. Sympos. Pure Math. 12, Amer. Math. Soc., Providence, 1969, 14–32. [13] A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381–406. · JFM 11.0147.01 [14] A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 17 (1880), 379–399. · JFM 12.0143.02 [15] D. McCullough and M. Wanderley, Nielsen equivalence of generating pairs of \(\operatorname{SL}(2,q)\), Glasg. Math. J. 55 (2013), 481–509. · Zbl 1284.20031 [16] I. Pak, “What do we know about the product replacement algorithm?” in Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ. 8, de Gruyter, Berlin, 2001, 301–347. · Zbl 0986.68172 [17] W. M. Schmidt, Equations over Finite Fields: An Elementary Approach, Lecture Notes in Math. 536, Springer, Berlin, 1976. · Zbl 0329.12001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.