×

zbMATH — the first resource for mathematics

Stable current sharing and voltage balancing in DC microgrids: a consensus-based secondary control layer. (English) Zbl 1402.93038
Summary: In this paper, we propose a secondary consensus-based control layer for current sharing and voltage balancing in DC microGrids (mGs). To this purpose, we assume that distributed generation units (DGUs) are equipped with decentralized primary controllers guaranteeing voltage stability. This goal can be achieved using, for instance, plug-and-play (PnP) regulators, which allow one to analyze the behavior of the closed-loop mG by approximating local primary control loops with either unitary gains or first-order transfer functions. Besides proving exponential stability, current sharing, and voltage balancing, we describe how to design secondary controllers in a PnP fashion when DGUs are added or removed. Theoretical results are complemented by simulations, using a 7-DGUs mG implemented in Simulink/PLECS, and experiments on a 3-DGUs mG.

MSC:
93A14 Decentralized systems
93C95 Application models in control theory
Software:
Plecs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agaev, R.; Chebotarev, P., On the spectra of nonsymmetric Laplacian matrices, Linear Algebra and its Applications, 399, 157-168, (2005) · Zbl 1076.15012
[2] Allmeling, J., & Hammer, W. (2013). PLECS-user manual.
[3] Behjati, H.; Davoudi, A.; Lewis, F., Modular DC-DC converters on graphs: cooperative control, IEEE Transactions on Power Electronics, 29, 12, 6725-6741, (2014)
[4] Bensoussan, A.; Menaldi, J. L., Difference equations on weighted graphs, Journal of Convex Analysis, 12, 1, 13-44, (2005) · Zbl 1068.05039
[5] Bolognani, S.; Zampieri, S., A distributed control strategy for reactive power compensation in smart microgrids, IEEE Transactions on Automatic Control, 58, 11, 2818-2833, (2013) · Zbl 1369.93429
[6] Bullo, F. (2016). Lectures on network systems. Version 0.85 http://motion.me.ucsb.edu/book-lns.
[7] Callier, F. M.; Desoer, C. A., Linear system theory, (2012), Springer Science & Business Media
[8] Cezar, G., Rajagopal, R., & Zhang, B. (2015). Stability of interconnected DC converters. In 54th Conference on decision and control (pp. 9-14).
[9] Dragicevic, T.; Lu, X.; Vasquez, J. C.; Guerrero, J. M., DC microgrids-part I: A review of control strategies and stabilization techniques, IEEE Transactions on Power Electronics, 31, 7, 4876-4891, (2016)
[10] Elsayed, A. T.; Mohamed, A. A.; Mohammed, O. A., DC microgrids and distribution systems: an overview, Electric Power Systems Research, 119, 407-417, (2015)
[11] Fairley, P., DC versus AC: the second war of currents has already begun, IEEE Power and Energy Magazine, 10, 6, (2012), 104-103. (in my view)
[12] Ferrari-Trecate, G.; Buffa, A.; Gati, M., Analysis of coordination in multi-agent systems through partial difference equations, IEEE Transactions on Automatic Control, 51, 6, 1058-1063, (2006) · Zbl 1366.93273
[13] Godsil, C.; Royle, G., (Algebraic graph theory, Graduate texts in mathematics, Vol. 207, (2001))
[14] Grone, R.; Merris, R.; Sunder, V. S., The Laplacian spectrum of a graph, SIAM Journal on Matrix Analysis and Applications, 11, 2, 218-238, (1990) · Zbl 0733.05060
[15] Guerrero, J. M.; Chandorkar, M.; Lee, T. L.; Loh, P. C., Advanced control architectures for intelligent microgrids - part I: decentralized and hierarchical control, IEEE Transactions on Industrial Electronics, 60, 4, 1254-1262, (2013)
[16] Hamzeh, M.; Ghafouri, M.; Karimi, H.; Sheshyekani, K.; Guerrero, J. M., Power oscillations damping in DC microgrids, IEEE Transactions on Energy Conversion, 31, 3, 970-980, (2016)
[17] Han, H.; Hou, X.; Yang, J.; Wu, J.; Su, M.; Guerrero, J. M., Review of power sharing control strategies for islanding operation of AC microgrids, IEEE Transactions on Smart Grid, 7, 1, 200-215, (2016)
[18] Han, R.; Meng, L.; Guerrero, J. M.; Vasquez, J. C., Distributed nonlinear control with event-triggered communication to achieve current-sharing and voltage regulation in DC microgrids, IEEE Transactions on Power Electronics, 33, 7, 6416-6433, (2018)
[19] Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proceedings of the IEEE, 95, 1, 138-162, (2007)
[20] Hong, Y.; Horn, R. A., The Jordan cononical form of a product of a Hermitian and a positive semidefinite matrix, Linear Algebra and its Applications, 147, 373-386, (1991) · Zbl 0712.15007
[21] Horn, R. A.; Johnson, C. R., Matrix analysis, (2012), Cambridge University Press
[22] Hu, X.; Zou, Y.; Yang, Y., Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization, Energy, 111, 971-980, (2016)
[23] Ipakchi, A.; Albuyeh, F., Grid of the future, Power and Energy Magazine, IEEE, 7, 2, 52-62, (2009)
[24] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 48, 6, 988-1001, (2003) · Zbl 1364.93514
[25] Justo, J. J.; Mwasilu, F.; Lee, J.; Jung, J.-W., AC-microgrids versus DC-microgrids with distributed energy resources: A review, Renewable and Sustainable Energy Reviews, 24, 387-405, (2013)
[26] Lang, S., (Linear algebra, Undergraduate texts in mathematics, (1987), Springer-Verlag)
[27] Meng, L.; Dragicevic, T.; Roldan Perez, J.; Vasquez, J. C.; Guerrero, J. M., Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids, IEEE Transactions on Smart Grid, 7, 3, 1504-1515, (2016)
[28] Moayedi, S.; Nasirian, V.; Lewis, F. L.; Davoudi, A., Team-oriented load sharing in parallel DC-DC converters, IEEE Transactions on Industry Applications, 51, 1, 479-490, (2015)
[29] Nasirian, V.; Moayedi, S.; Davoudi, A.; Lewis, F. L., Distributed cooperative control of DC microgrids, IEEE Transactions on Power Electronics, 30, 4, 2288-2303, (2015)
[30] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[31] Pasqualetti, F.; Dörfler, F.; Bullo, F., Attack detection and identification in cyber-physical systems, IEEE Transactions on Automatic Control, 58, 11, 2715-2729, (2013) · Zbl 1369.93675
[32] Pease, M. C., Methods of matrix algebra, (1965), Academic Press New York · Zbl 0145.03701
[33] Persis, C. D., Weitenberg, E., & Dörfler, F. (2016). A power consensus algorithm for DC microgrids, arXiv preprint arXiv:1611.04192.
[34] Riverso, S.; Sarzo, F.; Ferrari-Trecate, G., Plug-and-play voltage and frequency control of islanded microgrids with meshed topology, IEEE Transactions on Smart Grid, 6, 3, 1176-1184, (2015)
[35] Schiffer, J.; Seel, T.; Raisch, J.; Sezi, T., Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control, IEEE Transactions on Control Systems Technology, 24, 1, 96-109, (2016)
[36] Schulz, W., ETSI standards and guides for efficient powering of telecommunication and datacom, (Telecommunications energy conference, 2007. INTELEC 2007. 29th international, (2007), IEEE), 168-173
[37] Setiawan, M. A.; Abu-Siada, A.; Shahnia, F., A new technique for simultaneous load current sharing and voltage regulation in DC microgrids, IEEE Transactions on Industrial Informatics, 14, 4, 1403-1414, (2018)
[38] Shafiee, Q.; Dragicevic, T.; Andrade, F.; Vasquez, J. C.; Guerrero, J. M., Distributed consensus-based control of multiple DC-microgrids clusters, (Industrial electronics society, 2014-40th annual conference of the IEEE, (2014), IEEE), 2056-2062
[39] Simpson-Porco, J. W.; Dörfler, F.; Bullo, F., Voltage stabilization in microgrids via quadratic droop control, IEEE Transactions on Automatic Control, 62, 3, 1239-1253, (2017) · Zbl 1366.94794
[40] Tucci, M., Meng, L., Guerrero, Josep M., & Ferrari-Trecate, G. (2016). A consensus-based secondary control layer for stable current sharing and voltage balancing in DC microgrids. Technical report. http://arxiv.org/abs/1603.03624. · Zbl 1402.93038
[41] Tucci, M.; Riverso, S.; Ferrari-Trecate, G., Line-independent plug-and-play controllers for voltage stabilization in DC microgrids, IEEE Transactions on Control Systems Technology, 26, 3, 1115-1123, (2018)
[42] Tucci, M.; Riverso, S.; Vasquez, J. C.; Guerrero, J. M.; Ferrari-Trecate, G., A decentralized scalable approach to voltage control of DC islanded microgrids, IEEE Transactions on Control Systems Technology, 24, 6, 1965-1979, (2016)
[43] Zhao, J.; Dörfler, F., Distributed control and optimization in DC microgrids, Automatica, 61, 18-26, (2015) · Zbl 1327.93302
[44] Zonetti, D., Ortega, R., & Benchaib, A. (2014). A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. In 13th European control conference (pp. 1397-1403).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.