zbMATH — the first resource for mathematics

Computing confidence intervals for log-concave densities. (English) Zbl 06983959
Summary: In [F. Balabdaoui et al., Ann. Stat. 37, No. 3, 1299–1331 (2009; Zbl 1160.62008)], pointwise asymptotic theory was developed for the nonparametric maximum likelihood estimator of a log-concave density. Here, the practical aspects of their results are explored. Namely, the theory is used to develop pointwise confidence intervals for the true log-concave density. To do this, the quantiles of the limiting process are estimated and various ways of estimating the nuisance parameter appearing in the limit are studied. The finite sample size behavior of these estimated confidence intervals is then studied via a simulation study of the empirical coverage probabilities.

62-XX Statistics
cobs; ks; logcondens
Full Text: DOI
[1] Baird, M., Cross validation bandwidth selection for derivatives of various dimensional densities: A Monte Carlo study of kernel order and CV criteria. tech. rep., (2012), UCLA
[2] Balabdaoui, F.; Rufibach, K.; Wellner, J. A., Limit distribution theory for maximum likelihood estimation of a log-concave density, Ann. Statist., 37, 3, 1299-1331, (2009) · Zbl 1160.62008
[3] Balabdaoui, F.; Wellner, J. A., Chernoff’s density is log-concave. tech. rep., (2012), University of Washington, Available at arXiv:1203.0828
[4] Banerjee, M.; Wellner, J. A., Likelihood ratio tests for monotone functions, Ann. Statist., 29, 6, 1699-1731, (2001) · Zbl 1043.62037
[5] Banerjee, M.; Wellner, J. A., Confidence intervals for current status data, Scand. J. Stat., 32, 3, 405-424, (2005) · Zbl 1087.62107
[6] Bowman, A. W., An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71, 2, 353-360, (1984)
[7] Chang, G.; Walther, G., Clustering with mixtures of log-concave distributions, Comput. Statist. Data Anal., 51, 6242-6251, (2007) · Zbl 1445.62141
[8] Chen, Y.; Samworth, R. J., Smoothed log-concave maximum likelihood estimation with applications, Statist. Sinica, 23, 1373-1398, (2013) · Zbl 06202711
[9] Chernoff, H., Estimation of the mode, Ann. Inst. Statist. Math., 16, 31-41, (1964) · Zbl 0212.21802
[10] Cule, M.; Samworth, R., Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density, Electron. J. Stat., 4, 254-270, (2010) · Zbl 1329.62183
[11] Cule, M.; Samworth, R.; Stewart, M., Maximum likelihood estimation of a multidimensional log-concave density, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 5, 545-607, (2010)
[12] Dümbgen, L.; Hüsler, A.; Rufibach, K., Active set and EM algorithms for log-concave densities based on complete and censored data. tech. rep., (2010), University of Bern, Available at arXiv:0707.4643
[13] Dümbgen, L., Rufibach, K., 2006. logcondens: estimate a log-concave probability density from iid observations. R package version 2.0-7.
[14] Dümbgen, L.; Rufibach, K., Maximum likelihood estimation of a log-concave density and its distribution function, Bernoulli, 15, 40-68, (2009) · Zbl 1200.62030
[15] Dümbgen, L.; Rufibach, K., Logcondens: computations related to univariate log-concave density estimation, J. Stat. Softw., 39, 1-28, (2011)
[16] Duong, T., Ks: kernel density estimation and kernel discriminant analysis for multivariate data in R, J. Stat. Softw., 21, 1-16, (2007)
[17] Duong, T., 2012. ks: kernel smoothing. R package version 1.8-9.
[18] Groeneboom, P., Estimating a monotone density, (Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II, (Berkeley, Calif., 1983), Wadsworth Statist./Probab. Ser, (1985), Wadsworth Belmont, CA), 539-555 · Zbl 1373.62144
[19] Groeneboom, P., Brownian motion with a parabolic drift and Airy functions, Probab. Theory Related Fields, 81, 1, 79-109, (1989)
[20] Groeneboom, P.; Jongbloed, G.; Wellner, J. A., A canonical process for estimation of convex functions: the invelope of integrated Brownian motion \(+ t^4\), Ann. Statist., 29, 6, 1620-1652, (2001) · Zbl 1043.62026
[21] Groeneboom, P.; Jongbloed, G.; Wellner, J. A., Estimation of a convex function: characterizations and asymptotic theory, Ann. Statist., 29, 6, 1653-1698, (2001) · Zbl 1043.62027
[22] Groeneboom, P., Jongbloed, G., Wellner, J.A., 2004. The support reduction algorithm for computing nonparametric function estimates in mixture models. Available on arXiv: arXiv:math/0405511v1 [math.ST].
[23] Groeneboom, P.; Jongbloed, G.; Wellner, J. A., The support reduction algorithm for computing non-parametric function estimates in mixture models, Scand. J. Stat., 35, 3, 385-399, (2008) · Zbl 1199.65017
[24] Groeneboom, P.; Wellner, J. A., Computing chernoff’s distribution, J. Comput. Graph. Statist., 10, 2, 388-400, (2001)
[25] Härdle, W., (Smoothing Techniques, Springer Series in Statistics, (1991), Springer-Verlag New York), With implementation in \(S\) · Zbl 0716.62040
[26] Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A., (Nonparametric and Semiparametric Models, Springer Series in Statistics, (2004), Springer-Verlag New York) · Zbl 1059.62032
[27] Jones, M. C.; Marron, J. S.; Park, B. U., A simple root \(n\) bandwidth selector, Ann. Statist., 19, 4, 1919-1932, (1991) · Zbl 0745.62033
[28] Kosorok, M. R., Bootstrapping in grenander estimator, (Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen, Inst. Math. Stat. Collect., vol. 1, (2008), Inst. Math. Statist. Beachwood, OH), 282-292
[29] Léger, C.; MacGibbon, B., On the bootstrap in cube root asymptotics, Canad. J. Statist., 34, 1, 29-44, (2006) · Zbl 1096.62036
[30] Ng, P.T., Maechler, M., 2011. cobs: COBS — constrained B-splines (sparse matrix based). R package version 1.2-2.
[31] Pal, J. K.; Woodroofe, M.; Meyer, M., Estimating a polya frequency function_{2}, (Complex Datasets and Inverse Problems, IMS Lecture Notes Monogr. Ser., vol. 54, (2007), Inst. Math. Statist. Beachwood, OH), 239-249
[32] Politis, D. N.; Romano, J. P.; Wolf, M., (Subsampling, Springer Series in Statistics, (1999), Springer-Verlag New York) · Zbl 0931.62035
[33] Prakasa Rao, B. L.S., Estimation of a unimodal density, Sankhya A, 31, 23-36, (1969) · Zbl 0181.45901
[34] Rudemo, M., Empirical choice of histograms and kernel density estimators, Scand. J. Stat., 9, 2, 65-78, (1982) · Zbl 0501.62028
[35] Sen, B.; Banerjee, M.; Woodroofe, M., Inconsistency of bootstrap: the grenander estimator, Ann. Statist., 38, 4, 1953-1977, (2010) · Zbl 1202.62057
[36] Shorack, G. R.; Wellner, J. A., (Empirical Processes with Applications to Statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, (1986), John Wiley & Sons Inc. New York)
[37] Walther, G., Detecting the presence of mixing with multiscale maximum likelihood, J. Amer. Statist. Assoc., 97, 458, 508-513, (2002) · Zbl 1073.62533
[38] Walther, G., Inference and modeling with log-concave distributions, Statist. Sci., 24, 3, 319-327, (2009) · Zbl 1329.62192
[39] Wand, M. P.; Jones, M. C., Multivariate plug-in bandwidth selection, Comput. Statist., 9, 2, 97-116, (1994) · Zbl 0937.62055
[40] Wasserman, L., (All of Nonparametric Statistics, Springer Texts in Statistics, (2006), Springer New York) · Zbl 1099.62029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.