×

zbMATH — the first resource for mathematics

Large eddy simulation investigation of the canonical shock-turbulence interaction. (English) Zbl 1415.76390
Summary: High resolution large eddy simulations (LES) are performed to study the interaction of a stationary shock with fully developed turbulent flow. Turbulent statistics downstream of the interaction are provided for a range of weakly compressible upstream turbulent Mach numbers \(M_t=0.03-0.18\), shock Mach numbers \(M_s=1.2-3.0\) and Taylor-based Reynolds numbers \(Re_\lambda =20-2500\). The LES displays minimal Reynolds number effects once an inertial range has developed for \(Re_\lambda >100\). The inertial range scales of the turbulence are shown to quickly return to isotropy, and downstream of sufficiently strong shocks this process generates a net transfer of energy from transverse into streamwise velocity fluctuations. The streamwise shock displacements are shown to approximately follow a \(k^{-11/3}\) decay with wavenumber as predicted by linear analysis. In conjunction with other statistics this suggests that the instantaneous interaction of the shock with the upstream turbulence proceeds in an approximately linear manner, but nonlinear effects immediately downstream of the shock significantly modify the flow even at the lowest considered turbulent Mach numbers.
Reviewer: Reviewer (Berlin)

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76F50 Compressibility effects in turbulence
76L05 Shock waves and blast waves in fluid mechanics
76F25 Turbulent transport, mixing
Software:
VTF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agui, J. H.; Briassulis, G.; Andreopoulos, Y., Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields, J. Fluid Mech., 524, 143-195, (2005) · Zbl 1060.76500
[2] Barre, S.; Alem, D.; Bonnet, J. P., Experimental study of a normal shock/homogeneous turbulence interaction, AIAA J., 34, 5, 968-974, (1996)
[3] Batchelor, G. K., The Theory of Homogeneous Turbulence, (1953), Cambridge University Press · Zbl 0053.14404
[4] Bermejo-Moreno, I.; Larsson, J.; Lele, S. K., LES of canonical shock-turbulence interaction, Annual Research Briefs, 209-222, (2010), Stanford University
[5] Blaisdell, G. A.
[6] Braun, N. O.; Pullin, D. I.; Meiron, D. I., Regularization method for large eddy simulations of shock-turbulence interactions, J. Comput. Phys., 361, 231-246, (2018) · Zbl 1391.76203
[7] Chang, C.-T., Interaction of a plane shock and oblique plane disturbances with special reference to entropy waves, J. Aero. Sci., 24, 9, 675-682, (1957) · Zbl 0080.19402
[8] Chung, D.; Pullin, D. I., Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence, J. Fluid Mech., 643, 279-308, (2010) · Zbl 1189.76309
[9] Chung, D.; Pullin, D. I., Large-eddy simulation and wall modelling of turbulent channel flow, J. Fluid Mech., 631, 281-309, (2009) · Zbl 1181.76088
[10] Deiterding, R.; Radovitzky, R.; Mauch, S. P.; Noels, L.; Cummings, J. C.; Meiron, D. I., A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading, Engng Comput., 22, 3-4, 325-347, (2006)
[11] Dimotakis, P. E., The mixing transition in turbulent flows, J. Fluid Mech., 409, 69-98, (2000) · Zbl 0986.76024
[12] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 2, 517-549, (1999) · Zbl 0955.76045
[13] Freund, J. B., Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J., 35, 4, 740-742, (1997) · Zbl 0903.76081
[14] Garnier, E.; Sagaut, P.; Deville, M., Large eddy simulation of shock/homogeneous turbulence interaction, Comput. Fluids, 31, 2, 245-268, (2002) · Zbl 1059.76032
[15] Ghosal, S.; Lund, T. S.; Moin, P.; Akselvoll, K., A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech., 286, 229-255, (1995) · Zbl 0837.76032
[16] Hickel, S.; Egerer, C. P.; Larsson, J., Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction, Phys. Fluids, 26, 10, (2014)
[17] Hill, D. J.; Pantano, C.; Pullin, D. I., Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock, J. Fluid Mech., 557, 29-61, (2006) · Zbl 1094.76031
[18] Hill, D. J.; Pullin, D. I., Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J. Comput. Phys., 194, 2, 435-450, (2004) · Zbl 1100.76030
[19] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 2, 531-545, (2004) · Zbl 1061.76044
[20] Jacquin, L.; Cambon, C.; Blin, E., Turbulence amplification by a shock wave and rapid distortion theory, Phys. Fluids A, 5, 10, 2539-2550, (1993) · Zbl 0799.76029
[21] Jamme, S.; Cazalbou, J.-B.; Torres, F.; Chassaing, P., Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence, Flow Turbul. Combust., 68, 3, 227-268, (2002) · Zbl 1051.76576
[22] Kitamura, T.; Nagata, K.; Sakai, Y.; Sasoh, A.; Ito, Y., Changes in divergence-free grid turbulence interacting with a weak spherical shock wave, Phys. Fluids, 29, 6, (2017)
[23] Kosović, B.; Pullin, D. I.; Samtaney, R., Subgrid-scale modeling for large-eddy simulations of compressible turbulence, Phys. Fluids, 14, 4, 1511-1522, (2002) · Zbl 1185.76208
[24] Kovasznay, L. S. G., Turbulence in supersonic flow, J. Aero. Sci., 20, 10, 657-674, (1953) · Zbl 0051.42201
[25] Larsson, J.; Bermejo-Moreno, I.; Lele, S. K., Reynolds-and Mach-number effects in canonical shock-turbulence interaction, J. Fluid Mech., 717, 293-321, (2013) · Zbl 1284.76241
[26] Larsson, J.; Lele, S. K., Direct numerical simulation of canonical shock/turbulence interaction, Phys. Fluids, 21, 12, (2009) · Zbl 1183.76296
[27] Lee, S., Large eddy simulation of shock turbulence interaction, Annual Research Briefs, 73-84, (1992), Stanford University
[28] Lee, S.; Lele, S. K.; Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave, J. Fluid Mech., 251, 533-562, (1993)
[29] Lee, S.; Lele, S. K.; Moin, P., Interaction of isotropic turbulence with shock waves: effect of shock strength, J. Fluid Mech., 340, 225-247, (1997) · Zbl 0899.76194
[30] Lele, S. K., Shock-jump relations in a turbulent flow, Phys. Fluids A, 4, 12, 2900-2905, (1992) · Zbl 0762.76050
[31] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 1, 200-212, (1994) · Zbl 0811.65076
[32] Livescu, D. L.; Li, Z., Subgrid-scale backscatter after the shock-turbulence interaction, AIP Conference Proceedings, 1793, 150009, (2017), AIP Publishing
[33] Livescu, D.; Ristorcelli, J. R., Variable-density mixing in buoyancy-driven turbulence, J. Fluid Mech., 605, 145-180, (2008) · Zbl 1191.76060
[34] Livescu, D.; Ristorcelli, J. R.; Gore, R. A.; Dean, S. H.; Cabot, W. H.; Cook, A. W., High-Reynolds number Rayleigh-Taylor turbulence, J. Turbul., 10, (2009) · Zbl 1273.76142
[35] Livescu, D.; Ryu, J., Vorticity dynamics after the shock-turbulence interaction, Shock Waves, 26, 3, 241-251, (2016)
[36] Lombardini, M.
[37] Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25, 12, 2193-2203, (1982) · Zbl 0536.76034
[38] Mahesh, K.
[39] Mahesh, K.; Lele, S. K.; Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave, J. Fluid Mech., 334, 353-379, (1997) · Zbl 0899.76193
[40] Misra, A.; Pullin, D. I., A vortex-based subgrid stress model for large-eddy simulation, Phys. Fluids, 9, 8, 2443-2454, (1997) · Zbl 1185.76770
[41] Moore, F. K.
[42] Petersen, M. R.; Livescu, D., Forcing for statistically stationary compressible isotropic turbulence, Phys. Fluids, 22, 11, (2010)
[43] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002
[44] Pullin, D. I.; Saffman, P. G., Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence, Phys. Fluids, 6, 5, 1787-1796, (1994) · Zbl 0830.76044
[45] Ribner, H. S.
[46] Ribner, H. S.
[47] Ribner, H. S., Spectra of noise and amplified turbulence emanating from shock-turbulence interaction, AIAA J., 25, 3, 436-442, (1986)
[48] Ribner, H. S.
[49] Ryu, J.; Livescu, D., Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, J. Fluid Mech., 756, R1, (2014)
[50] Samtaney, R.; Pullin, D. I.; Kosovic, B., Direct numerical simulation of decaying compressible turbulence and shocklet statistics, Phys. Fluids, 13, 5, 1415-1430, (2001) · Zbl 1184.76474
[51] Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R., A two-length scale turbulence model for single-phase multi-fluid mixing, Flow Turbul. Combust., 96, 1, 1-43, (2016)
[52] Schwarzkopf, J. D.; Livescu, D.; Gore, R. A.; Rauenzahn, R. M.; Ristorcelli, J. R., Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids, J. Turbul., 12, N49, (2011) · Zbl 1273.76146
[53] Sinha, K.; Mahesh, K.; Candler, G. V., Modeling shock unsteadiness in shock/turbulence interaction, Phys. Fluids, 15, 8, 2290-2297, (2003) · Zbl 1186.76484
[54] Tian, Y.; Jaberi, F. A.; Li, Z.; Livescu, D., Numerical study of variable density turbulence interaction with a normal shock wave, J. Fluid Mech., 829, 551-588, (2017)
[55] Towns, J.; Cockerill, T.; Dahan, M. L.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N., XSEDE: accelerating scientific discovery, Comput. Sci. Engng, 16, 5, 62-74, (2014)
[56] Voelkl, T.; Pullin, D. I.; Chan, D. C., A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation, Phys. Fluids, 12, 7, (2000) · Zbl 1184.76575
[57] Wouchuk, J. G.; Huete Ruiz De Lira, C.; Velikovich, A. L., Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field, Phys. Rev. E, 79, (2009)
[58] Zank, G. P.; Zhou, Y.; Matthaeus, W. H.; Rice, W. K. M., The interaction of turbulence with shock waves: a basic model, Phys. Fluids, 14, 11, 3766-3774, (2002) · Zbl 1185.76417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.