×

zbMATH — the first resource for mathematics

Decomposition theorem for proper Kähler morphisms. (English) Zbl 0699.14009
See the preview in Zbl 0687.14007.

MSC:
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14E05 Rational and birational maps
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14F99 (Co)homology theory in algebraic geometry
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. BEILINSON, J. BERNSTEIN AND P. DELIGNE, Faisceaux pervers, Asterisque, 100 (1982).
[2] E. CATTANI AND A. KAPLAN, Polarized mixed Hodge structures and the local monodromy of variation of Hodge structure, Invent. Math. 67 (1982), 101-115. · Zbl 0516.14005
[3] E. CATTANI, A. KAPLAN AND W. SCHMID, L2 and intersection cohomologies for a polarizable variatio of Hodge structure, Invent. Math. 87 (1987), 217-252. · Zbl 0611.14006
[4] P. DELIGNE, Theorie de Hodge I, II, III. Actes Congres Intern. Math. (1970), 425-430; Publ. Math IHES, 40 (1971), 5-58;44 (1974), 5-77. · Zbl 0219.14006
[5] P. DELIGNE, La conjecture de Weil II, Publ. Math. IHES, 52 (1980), 137-252 · Zbl 0456.14014
[6] P. DELIGNE, Theoreme de Lefschetz et criteres de degenerescence de suites spectrales, Publ. Math IHES, 35 (1968), 107-126. · Zbl 0159.22501
[7] P. DELIGNE, Le formalisme des cycles evanescents, in SGA 7 II, Lect. Notes in Math. 340 (1973), 82-115, Springer. · Zbl 0266.14008
[8] M. KASHIWARA, On the maximally overdetermined system of linear differential equations I, Publ RIMS 10 (1974/75), 563-579. · Zbl 0313.58019
[9] M. KASHIWARA, Vanishing cycle sheaves and holonomic systems of differential equations, Lect Notes in Math. 1016 (1983), 134-142, Springer. · Zbl 0566.32022
[10] M. KASHIWARA AND T. KAWAI, The Poincare lemma for a variation of Hodge structure, Publ. RIM 23 (1987), 345-407. · Zbl 0629.14005
[11] M. KASHIWARA AND T. KAWAI, Hodge structure and holonomic systems, Proc. Japan Acad. 62 (1986), 1-4. · Zbl 0629.14006
[12] B. MALGRANGE, Polynmes de Bernstein-Sato et cohomologie evanescente, Asterisque 101-102 (1983), 243-267. · Zbl 0528.32007
[13] M. SAITO, Hodge structure via filtered ^-modules, Asterisque 130 (1985), 342-351 · Zbl 0621.14008
[14] M. SAITO, Modules de Hodge polarisables, Publ. RIMS 24 (1988), 849-995 · Zbl 0691.14007
[15] M. SAITO, Mixed Hodge Modules, Proc. Japan Acad. 62 A (1986), 360-363 · Zbl 0635.14008
[16] M. SAITO, On the derived category of mixed Hodge Modules, ibid., 364-366 · Zbl 0635.14009
[17] M. SAITO, Mixed Hodge Modules, RIMS preprint 585, July, 1987 · Zbl 0727.14004
[18] M. SAITO, Introduction to Mixed Hodge Modules, RIMS preprint 605, December, 1987 · Zbl 0753.32004
[19] M. SAITO, Duality for vanishing cycle functors, to appear in Publ. RIMS. · Zbl 0712.32011
[20] S. ZUCKER, Hodge theory with degenerating coefficients: L2 cohomology in the Poincare metric, Ann Math. 109 (1979), 415^76. JSTOR: · Zbl 0446.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.