zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlocal models for nonlinear, dispersive waves. (English) Zbl 0699.35227
The authors discuss nonlocal models for nonlinear dispersive waves. It is shown that the initial value problem for these equations is globally well posed in the classical sense. The result of the problem is stated for specific equations but the techniques utilized are shown to be used for a wide range of problems. The paper is of theoretical nature; it requires numerical experiments for demonstration.
Reviewer: P.K.Mahanti

35Q99PDE of mathematical physics and other areas
76B55Internal waves
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI
[1] Korteweg, D. J.; De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. mag. 39, No. 5, 422-443 (1985) · Zbl 26.0881.02
[2] Benjamin, T. B.: Lectures on nonlinear wave motion. Lectures in applied mathematics 15, 3-47 (1974)
[3] Benjamin, T. B.; Bona, J. L.; Mahony, J. J.: Model equation for long waves in nonlinear dispersive systems. Phil. trans. R. soc. London ser. A 272, 47-78 (1972) · Zbl 0229.35013
[4] Benjamin, T. B.: Internal waves of permanent form in fluids of great depth. J. fluid mech. 29, 559-592 (1967) · Zbl 0147.46502
[5] Ono, H.: Algebraic solitary waves in stratified fluids. J. phys. Soc. Japan 39, 1082-1091 (1975)
[6] Joseph, R. I.: Solitary waves in a finite depth fluid. J. phys. A 10, L225 (1977) · Zbl 0369.76018
[7] Kubota, T.; Ko, D. R. S.; Dobbs, L. D.: Weakly nonlinear, long internal gravity waves in stratified fluids of finite depth. J. hydronautics 12, 157-165 (1978)
[8] Smith, R.: Nonlinear Kelvin and continental-shelf waves. J. fluid mech. 57, 379-391 (1972) · Zbl 0235.76007
[9] Pritchard, W. G.: Solitary waves in rotating fluids. J. fluid mech. 42, 61-83 (1970)
[10] Leibovitch, S.: Weakly non-linear waves in rotating fluids. J. fluid mech. 42, 803-822 (1970) · Zbl 0197.53303
[11] Temam, R.: Sur un problème non linéaire. J. math. Pures appl. 48, 159-170 (1969) · Zbl 0187.03902
[12] Saut, J. -C.: Sur quelques généralisations de l’équation de Korteweg-de Vries. J. math. Pures appl. 58, 21-61 (1979) · Zbl 0449.35083
[13] Saut, J. -C.; Temam, R.: Remarks on the Korteweg-de Vries equation. Israel J. Math. 24, 78-87 (1976) · Zbl 0334.35062
[14] Bona, J. L.; Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Phil. trans. R. soc. London ser. A 278, 555-604 (1975) · Zbl 0306.35027
[15] Bona, J. L.; Scott, L. R.: Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces. Duke math. J. 43, 87-99 (1976) · Zbl 0335.35032
[16] Bennett, D. P.; Brown, R. W.; Stanfield, S. E.; Stroughair, J. D.; Bona, J. L.: The stability of internal solitary waves. Math. proc. Camb. phil. Soc. 94, 351-379 (1983) · Zbl 0574.76028
[17] Iorio, R.: On the Cauchy problem for the Benjamin-Ono equation. Comm. PDE 11, 1031-1081 (1986) · Zbl 0608.35030
[18] G. Ponce, Smoothing properties of solutions to the Benjamin-Ono equation, to appear. · Zbl 0704.35058
[19] Satsuma, J.; Ablowitz, M. J.; Kodama, Y.: On an internal wave equation describing a stratified fluid with finite depth. Phys. lett. A 73, 283-286 (1979)
[20] Santini, P. M.; Ablowitz, M. J.; Fokas, A. S.: On the limit from the intermediate long wave equation to the Benjamin-Ono equation. J. math. Phys. 25, 892-899 (1984) · Zbl 0543.45008
[21] Liu, A. K.; Kubota, T.; Ko, D. R. S.: Resonant transfer of energy between nonlinear waves in neighboring pycnoclines. Stud. appl. Math. 63, 25-43 (1980) · Zbl 0446.76030
[22] Abdelouhab, L.: Sur quelques équations dispersives non linéaires nonlocales. Thèse de 3ième cycle 7 (October 1984)
[23] M. Felland, Decay and smoothing of solutions of nonlinear wave equations with dissipation and dispersion, Ph.D. Thesis, University of Chicago.
[24] Lions, J. L.: Quelques methodes de résolution des problèmes aux limites non-linéaires. (1969)
[25] Lions, J. L.; Magenes, E.: Problèmes aux limites non homogènes et applications. 1 (1968) · Zbl 0165.10801
[26] Case, K. M.: Properties of the Benjamin-Ono equation. J. math. Phys. 20, 972-977 (1979) · Zbl 0427.35061
[27] Matsuno, Y.: Bilinear transformation method. (1984) · Zbl 0552.35001
[28] Kupershmidt, B.: Involutivity of conservation laws for a fluid of finite depth and Benjamin-Ono equations. Libertas math. 1, 125-132 (1981) · Zbl 0479.76030
[29] Titchmarsh, E. E.: Introduction to the theory of Fourier’s integrals. (1937) · Zbl 0017.40404
[30] Tricomi, F. G.: Integral equations. (1957) · Zbl 0078.09404
[31] Stein, E. M.: Singular integrals and differentiability properties of functions. (1970) · Zbl 0207.13501
[32] Lebedev, D. R.; Radul, A. O.: Generalized internal long waves equations, construction, Hamiltonian structure, and conservation laws. Commun. math. Phys. 91, 543-555 (1983) · Zbl 0548.35099
[33] Grisvard, P.: Quelques propriétés des espaces de Sobolev utiles dans l’étude des équations de Navier-Stokes (I). Sem. de Nice: problèmes d’évolution non-linéaires (1974--1975)
[34] Nakamura, A.: Bäcklund transform, and conservation laws of the Benjamin-Ono equation. J. phys. Soc. Japan 47, 1335-1340 (1979)
[35] Nakamura, A.; Matsuno, Y.: Exact one- and two-periodic wave equations of fluid of finite depth. J. phys. Soc. Japan 48, 653-657 (1980)
[36] Gibbons, J.; Kupershmidt, B.: A linear scattering problem for the finite depth equation. Phys. lett. A 79, 31-32 (1980)
[37] Kodama, Y.; Ablowitz, M. J.; Satsuma, J.: Direct and inverse scattering problems of the nonlinear intermediate long wave equation. J. math. Phys. 23, 564-576 (1982) · Zbl 0489.35004
[38] Chen, H. H.; Hirota, R.; Lee, Y. C.: Inverse scattering problem for internal waves with finite fluid depth. Phys. lett. A 75, 254-256 (1980)
[39] Kodama, Y.; Satsuma, J.; Ablowitz, M. J.: Nonlinear intermediate long-wave equation: analysis and method of solution. Phys. rev. Lett. 46, 687-690 (1981)
[40] Ablowitz, M. J.; Segur, H.: Solitons and the inverse scattering transform. (1981) · Zbl 0472.35002
[41] Ablowitz, M. J.; Fokas, A. S.; Satsuma, J.; Segur, H.: On the periodic intermediate long wave equation. J. phys. A 15, 781-786 (1982) · Zbl 0496.45013
[42] Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Advances in mathematics supplementary studies 8, 93-128 (1983)
[43] Albert, J. P.; Bona, J. L.; Henry, D.: Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Physica D 24, 343-366 (1987) · Zbl 0634.35079