zbMATH — the first resource for mathematics

Ergodic properties of a method of numerical simulation of chaotic dynamical systems. (English. Russian original) Zbl 0699.58051
Math. Notes 45, No. 4, 267-273 (1989); translation from Mat. Zametki 45, No. 4, 3-12 (1989).
The author studies the influence of the discretization on the spaces under properties of chaotic dynamical systems. For this, he presents a new method of numerical manifolds based on the idea of the introduction of supplementary special stochastic perturbations on “numerical lattice” and investigates ergodic properties on the example of many dimensional piecewise expanding mappings.
Reviewer: N.Papaghiuc

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37A99 Ergodic theory
Full Text: DOI
[1] M. Yamaguti and S. Ushiki, ?Discretization et chaos,? C. R. Acad. Sci. A.,290, No. 14, 637-639 (1980). · Zbl 0432.34009
[2] S. Ushiki, ?Central difference scheme and chaos,? Physica D,4, No. 3, 407-424 (1982). · Zbl 1194.65097 · doi:10.1016/0167-2789(82)90044-6
[3] Yu. B. Suris, ?Quasirandomness of dynamical systems generated by finite-difference approximations of completely integrable Hamiltonian systems,? Manuscript deposited in VINITI, Moscow No. 5173-C86.
[4] M. L. Blank, ?Ergodic properties of discretizations of dynamical systems,? Dokl. Akad. Nauk SSSR,278, No. 4, 779-782 (1984). · Zbl 0589.58012
[5] M. L. Blank, ?Stochastic attractors and their small perturbations,? in: Mathematical Problems of Statistical Mechanics and Dynamics, Reidel, Holland (1987).
[6] M. L. Blank, ?Stochastic properties of deterministic dynamical systems,? Sov. Sci. Rev. C. Math. Phys.,6, 243-271 (1987). · Zbl 0634.58019
[7] K. Matsumoto and I. Ishida, ?Noise-induced order,? J. Stat. Phys.,31, 87-106 (1983). · doi:10.1007/BF01010923
[8] C. Beck and G. Roepstorff, ?Effects of phase space discretization on the long-time behavior of dynamical systems,? Physica D.,25, 173-180 (1987). · Zbl 0617.65066 · doi:10.1016/0167-2789(87)90100-X
[9] S. M. Hammel, ?Do numerical orbits of chaotic dynamical systems represent true orbits?? J. Complexity,3, 136-145 (1987). · Zbl 0639.65037 · doi:10.1016/0885-064X(87)90024-0
[10] M. Scarowsky and A. Boyarsky, ?Long periodic orbits of the triangle map,? Proc. Am. Math. Soc.,97, No. 2, 247-254 (1986). · Zbl 0614.28011 · doi:10.1090/S0002-9939-1986-0835874-6
[11] P. Gora and A. Boyarsky, ?Why computers like Lebesgue measure,? Preprint Concordia Univ. (1987).
[12] V. V. Ivanov and A. G. Kachurovskii, ?Absolutely continuous invariant measures of locally expanding maps,? Preprint No. 27, Inst. Mat. Sib. Otd. Akad. Nauk SSSR (1986). · Zbl 1040.37001
[13] D. H. Mayer, ?Approach to equilibrium for locally expanding maps in Rn,? Commun. Math. Phys.,95, No. 1, 1-15 (1984). · Zbl 0577.58022 · doi:10.1007/BF01215752
[14] A. Lasota and J. A. Yorke, ?On the existence of invariant measures for piecewise monotonic transformations,? Trans. Am. Math. Soc.,186, 481-488 (1973). · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[15] C. T. Ionescu-Tulcea and G. Marinescu, ?Theorie ergodique pour des classes d’operations non comple(te)ment continues,? Ann. Math.,52, No. 1, 140-147 (1950). · Zbl 0040.06502 · doi:10.2307/1969514
[16] F. Hoffbauer and G. Keller, ?Ergodic properties of measures for piecewise monotonic transformations,? Math. Z.,180, 119-140 (1980). · Zbl 0485.28016 · doi:10.1007/BF01215004
[17] L. A. Bunimovich, Ya. B. Pesin, Ya. G. Sinai, and M. V. Yakobson, ?Ergodic theory of smooth dynamical systems. II,? Itogi Nauki Tekhniki, Ser. Sov. Probl. Mat. Fundamental’nye Naproavleniya,2, 113-231 (1985). · Zbl 0781.58018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.