×

The two-dimensional O(N) nonlinear \(\sigma\)-model: Renormalisation and effective actions. (English) Zbl 0699.58067

The authors study the two-dimensional nonlinear O(N) sigma model from Wilson Renormalization Group viewpoint. They show the existence of the renormalized trajectory in perturbation theory in the effective charge. This model is also useful in the small field analysis of the rigorous renormalization group construction of the continuum theory.
Reviewer: V.Oproiu

MSC:

58Z05 Applications of global analysis to the sciences
81T17 Renormalization group methods applied to problems in quantum field theory

Keywords:

renormalization
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Br?zin, E., Le Guillou, J. C., Zinn-Justin, J.: Phys. Rev.D14, 2615 (1976)
[2] Br?zin and Zin-Justin, J.: Phys. Rev.B14, 3110 (1976)
[3] Brydges, D. C., Kennedy, J.: J. Stat. Phys.48, 19 (1987)
[4] Gawedzki, K., Kupiainen, A.: Commun. Math. Phys.106, 553 (1986)
[5] Gawedzki, K., Kupiainen, A.: In: Critical phenomena, random systems, gauge theories. Osterwalder, K., Stora, R. (eds.). North Holland: Els?vier 1986
[6] Heller, U. M.: Phys. Rev. Lett.60, 2235 (1988)
[7] Mitter, P. K., Ramadas, T. R.: In: Proceedings of the Ringberg Workshop (1987 February) on ?Non-linear field transformations in Quantum Field Theory?. In: Lecture Notes in Physics. Breitenlohner, P., Malson, D., Sibold, K. (eds.). Berlin, Heidelberg, New York: Springer
[8] Patrascioiu, A., Seiler, E., Stamatescu, I. O.: Max Planck Institute, Report No. MPI-PAE/PhTh 75/87, 1987
[9] Polchinski, J. J.: Nucl. Phys.B231, 269 (1984)
[10] Polyakov, A. M.: Phys. Lett.59B, 79 (1975)
[11] Seiler, E., Stamatescu, I. O., Patroscioiu, A., Linke, V.: Max Planck Institute, Munich, Report No. MPI-PAE/PhTh 75/87, 1987
[12] Wegner, F. J.: In: Phase transitions and critical pehenomena, vol. 6. Domb, C., Green, M. S. (eds.) London, New York: Academic Press 1976
[13] Wilson, K. G., Kogut, J.: Phys. Rep.12C, 75 (1974)
[14] Mitter, P. K., Ramadas, T. R.: Non-perturbative quantum field theory. t’ Hooft, G. (eds.) London. New York: Plenum Press 1988 (in press)
[15] Witten, E.: Commun. Math. Phys.92, 455 (1984) · Zbl 0536.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.