Homogenization and a Galerkin approximation in three-dimensional beam theory. (English) Zbl 0699.73005

Summary: In this work we study the limit relations between a Galerkin approximation method, of the spectral type, for the three-dimensional linearized elasticity model of a multicellular beam, and the respective homogenization process. We show that the choice of the basis functions, of the Galerkin approximation, commutes with the homogenization process but the same does not hold for the final approximations of the three- dimensional solution.


74E05 Inhomogeneity in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
49M15 Newton-type methods
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI


[1] Geymonet G., Stress Distribution in Anisotropic Elastic Composite Beams. Applications of Multiple Scaling in Mechanics (1987)
[2] Tutek Z., Applications of Multiple Scaling in Mechanics (1987) · Zbl 0632.73013
[3] DOI: 10.1080/00036819008839956 · Zbl 0684.73005
[4] Trabucho L., J. Asymptotic Analysis 2 pp 223– (1989)
[5] Trabucho L., Mod. Math, et Anal. Num 24 pp 651– (1990)
[6] Miara B., A Galerkin spectral approximation in linearized beam theory · Zbl 0754.73095
[7] Bermudez A., RAIRO 18 pp 347– (1984)
[8] DOI: 10.1007/BF00040890 · Zbl 0653.73010
[9] Mascarenhas M.L., A Derivation of Generalized bending and torsion models for Multicellular Linearized Elastic Beams by Asymptotic Expansion Methods (1987)
[10] Trabucho L., Applications Qf Multiple Scaling in Mechanics (1987)
[11] DOI: 10.1080/00036818808839820 · Zbl 0637.73003
[12] Tutek Z., Math. Meth. Appl. Sci 8 pp 1– (1987)
[13] Ciarlet P.G., J. de Mecanique 18 pp 315– (1979)
[14] DOI: 10.1016/0045-7825(79)90089-6 · Zbl 0405.73050
[15] Tartar L., Problemes d’Homogenisation dans les Equations aux Derivees Partielles (1977)
[16] Murat F., Seminaire d’Analyse Fonctionnelle et Numerique 1977/78 (1977)
[17] DOI: 10.1016/0022-247X(79)90211-7 · Zbl 0427.35073
[18] Lene F., Contribution a 1’Etude des riateriaux Composites et de Leur Endommaqement (1984)
[19] Benssoussan A., Asymptotic Analysis for Periodic Structures (1978)
[20] Sanchez-Palencia E., Lecture Notes in Physics 127 (1980)
[21] DOI: 10.1016/0022-1236(84)90041-7 · Zbl 0549.46019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.