×

zbMATH — the first resource for mathematics

A signature invariant for knotted Klein graphs. (English) Zbl 1401.05081
Summary: We define some signature invariants for a class of knotted trivalent graphs using branched covers. We relate them to classical signatures of knots and links. Finally, we explain how to compute these invariants through the example of Kinoshita’s knotted theta graph.
MSC:
05C10 Planar graphs; geometric and topological aspects of graph theory
57M12 Low-dimensional topology of special (e.g., branched) coverings
57M15 Relations of low-dimensional topology with graph theory
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 10.2307/1970717 · Zbl 0164.24301
[2] 10.1142/S0218216516500462 · Zbl 1347.57004
[3] 10.1017/CBO9780511626272
[4] 10.2140/pjm.1992.153.31 · Zbl 0784.57002
[5] 10.1142/S0218216593000179 · Zbl 0797.57003
[6] ; Gordon, À la recherche de la topologie perdue. Progr. Math., 62, 159, (1986)
[7] 10.1007/BF01609479 · Zbl 0391.57004
[8] 10.2140/pjm.1979.82.69 · Zbl 0391.57003
[9] ; Hirzebruch, Global analysis, 253, (1969)
[10] 10.2140/involve.2016.9.857 · Zbl 1346.57010
[11] 10.2307/1997704 · Zbl 0322.55003
[12] ; Kinoshita, Osaka Math. J., 10, 263, (1958)
[13] 10.2140/pjm.1972.42.89 · Zbl 0239.55002
[14] 10.1007/BFb0089031 · Zbl 0668.57001
[15] ; Lescop, Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., 67, (2015)
[16] ; Montesinos, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R H Fox). Ann. of Math. Studies, 84, 227, (1975)
[17] 10.1016/0040-9383(70)90018-2
[18] 10.1090/S0002-9947-04-03423-3 · Zbl 1056.57007
[19] ; Rolfsen, Knots and links. Mathematics Lecture Series, 7, (1990) · Zbl 0854.57002
[20] 10.1002/jcc.540080516
[21] 10.2140/gtm.2002.4.337 · Zbl 1163.57301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.