zbMATH — the first resource for mathematics

The \(q\)-deformed tinkerbell map. (English) Zbl 1403.37059
Summary: \(q\)-deformations of functions and distributions have been used in the literature to explain several experimental observations. In this work, we study the dynamics of the Tinkerbell map under \(q\)-deformations. The system exhibits a rich variety of dynamical behavior as \(q\) varies, including occurrences of interior crises, paired cascades, simultaneous occurrence of Neimark-Sacker and reverse Neimark-Sacker bifurcations, and co-existence of attractors and multistability. Numerical analysis reveals the existence of 3 limit cycles occurring simultaneously in a certain parameter regime. An appropriate choice of initial conditions enables one to choose a desired attractor for the system among other co-existing ones, thus switching the system between different dynamical states. We demonstrate the possibility of secure encryption and decryption of messages with the \(q\)-deformed Tinkerbell map. The system’s sensitivity to the initial conditions and to the deformation parameter makes the cryptic message secure, and decrypting the original message difficult. We propose the use of the \(q\)-deformed map as a novel method for transmission of messages securely.
©2018 American Institute of Physics
37G10 Bifurcations of singular points in dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
05A30 \(q\)-calculus and related topics
Full Text: DOI
[1] Matthew, R., On the derivation of a “chaotic” encryption algorithm, Cryptologia, 8, 29-42, (1989)
[2] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824, (1990) · Zbl 0938.37019
[3] Oppenheim, A. V.; Wornell, G. W.; Isabelle, S. H.; Cuomo, K. M., Signal processing in the context of chaotic signals, Proc. IEEE ICASSP-92, 4, 117-120, (1992)
[4] Kocarev, Lj.; Halle, K. S.; Eckert, K.; Chua, L. O.; Parlitz, U., Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bifur. Chaos, 2, 709-713, (1992) · Zbl 0875.94134
[5] Baptista, M. S., Cryptography with chaos, Phys. Lett. A, 240, 50-54, (1998) · Zbl 0936.94013
[6] Banerjee, S.; Kurths, J., Chaos and Cryptography: A new dimension in secure communications, Eur. Phys. J. ST, 223, 1441-1445, (2014)
[7] Euler, L., Introduction in Analysis Infinitorum, (1748), Bousquet: Bousquet, Lausanne
[8] Heine, E., Handbuch der Kugelfunktionen, (1878), Reimer: Reimer, Berlin
[9] Jackson, F. H., A generalization of the functions \(\operatorname{\Gamma}(n)\) and \(x^n\), Proc. R. Soc. London, 74, 64-72, (1904) · JFM 35.0460.01
[10] Jackson, F. H., On q-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46, 253-281, (1909)
[11] Geisel, T.; Thomae, S., Anomalous diffusion in intermittent chaotic systems, Phys. Rev. Lett., 52, 1936, (1984)
[12] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479-487, (1988) · Zbl 1082.82501
[13] Beck, C.; Cohen, E. G. D.; Rizzo, S., Atmospheric turbulence and superstatistics, Europhys. News, 36, 189-191, (2005)
[14] Abe, S.; Tirnakli, U.; Varotsos, P. A., Complexity of seismicity and nonextensive statistics, Europhys. News, 36, 206-208, (2005)
[15] Plastino, A. R.; Plastino, A., Stellar polytropes and Tsallis entropy, Phys. Lett. A, 174, 384-386, (1993)
[16] Kaniadakis, G.; Lavagno, A.; Quarati, P., Generalized statistics and solar neutrinos, Phys. Lett. B, 369, 308-312, (1996) · Zbl 1002.82507
[17] Lutz, E., Anomalous diffusion and Tsallis statistics in an optical lattice, Phys. Rev. A, 67, 051402(R), (2003)
[18] Douglas, P.; Bergamini, S.; Renzoni, F., Tunable Tsallis distributions in dissipative optical lattices, Phys. Rev. Lett., 96, 110601, (2006)
[19] Edwards, A. M., Revisiting Lèvy flight search patterns of wandering albatrosses, bumblebees and deer, Nature, 449, 1044-1048, (2007)
[20] Tamarit, F. A.; Anteneodo, C., Relaxation and aging in a long-range interacting system, Europhys. News, 36, 194-197, (2005)
[21] Boon, J. P.; Tsallis, C., Special issue overview Nonextensive statistical mechanics: new trends, new perspectives, Europhys. News, 36, 185-186, (2005)
[22] Hentschel, H. G. E.; Procaccia, I., The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, 8, 435-444, (1983) · Zbl 0538.58026
[23] Jaganathan, R.; Sinha, S., A \(q\)-deformed nonlinear map, Phys. Lett. A, 338, 277-287, (2005) · Zbl 1136.82304
[24] Patidar, V.; Sud, K. K., A comparative study on the co-existing attractors in the Gaussian map and its q-deformed version, Commun. Nonlinear Sci. Numer. Simul., 14, 827-838, (2009)
[25] Patidar, V.; Purohit, G.; Sud, K. K., Dynamical Behavior of \(q\)-deformed Henon map, Int. J. Bifur. Chaos, 21, 1349-1356, (2011) · Zbl 1248.37073
[26] Iyengar, S. V.; Balakrishnan, J.; Kurths, J., Impact of climate change on Larch Budmoth cyclic outbreaks, Sci. Rep., 6, 27845, (2016)
[27] Alligood, K. T.; Sauer, T. D.; Yorke, J. A., Chaos: An Introduction to Dynamical Systems, (1996), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0867.58043
[28] Nusse, H. E.; Yorke, J. A., Dynamics: Numerical Explorations, (1997), Springer: Springer, NY
[29] Davidchack, R. L.; Lai, Y. C.; Klebanoff, A.; Bollt, E. M., Towards complete detection of unstable periodic orbits in chaotic systems, Phys. Lett. A, 287, 99-104, (2001) · Zbl 0971.37041
[30] Mcsharry, P. E.; Ruffino, P. R. C., Asymptotic angular stability in non-linear systems: Rotation numbers and winding numbers, Dyn. Syst., 18, 191-200, (2003) · Zbl 1052.37034
[31] Six Lectures on Dynamical Systems, edited by B. Aulbach and F. Colonius (World Scientific, Singapore, 1996).
[32] Goldsztein, A.; Hayes, W.; Collins, P., Tinkerbell is chaotic, SIAM J. Appl. Dyn. Syst., 10, 1480-1501, (2011) · Zbl 1235.37027
[33] Yuan, S.; Jiang, T.; Jing, Z., Bifurcation and chaos in the Tinkerbell map, Int. J. Bifur. Chaos, 21, 3137-3156, (2011) · Zbl 1258.37057
[34] Sprott, J. C.; Xiong, A., Classifying and quantifying basins of attraction, Chaos, 25, 083101, (2015) · Zbl 1374.37026
[35] Coelho, L. S.; Marianai, V. C., Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning, Comput. Math. Appl., 64, 2371-2382, (2012) · Zbl 1268.93053
[36] Stoyanov, B.; Kordov, K., Novel secure pseudo-random number generation scheme based on two Tinkerbell maps, Adv. Stud. Theor. Phys., 9, 411-421, (2015)
[37] Stoyanov, B., Pseudo-random bit generation algorithm based on chebyshev polynomial and Tinkerbell map, Appl. Math. Sci., 8, 6205-6210, (2014)
[38] Aboites, V.; Wilson, M., Tinkerbell chaos in a ring phase-conjugated resonator, Int. J. Pure Appl. Math., 54, 429-435, (2009) · Zbl 1200.37079
[39] Sander, E.; Yorke, J. A., Connecting period-doubling cascades to chaos, Int. J. Bifur. Chaos, 22, 1250022, (2012)
[40] Liz, E.; Ruiz-Herrera, A., The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65, 997-1016, (2012) · Zbl 1251.92044
[41] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, sudden changes in chaotic attractors and transient chaos, Phys. D, 7, 181-200, (1983) · Zbl 0561.58029
[42] Li, C.; Chen, G., Estimating the Lyapunov exponents of discrete systems, Chaos, 14, 343-346, (2004) · Zbl 1080.37032
[43] Li, C., On super-chaotifying discrete dynamical systems, Chaos, Solitons Fractals, 21, 855-861, (2004) · Zbl 1045.37012
[44] Wong, W.; Lee, L.; Wong, K., A modified chaotic cryptographic method, Comp. Phys. Commun., 138, 234-236, (2001) · Zbl 0987.94033
[45] Wong, K. W., A fast chaotic cryptographic scheme with dynamic look-up table, Phys. Lett. A, 298, 238-242, (2002) · Zbl 0995.94029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.