×

zbMATH — the first resource for mathematics

Autonomous jerk oscillator with cosine hyperbolic nonlinearity: analysis, FPGA implementation, and synchronization. (English) Zbl 1440.34037
Summary: A two-parameter autonomous jerk oscillator with a cosine hyperbolic nonlinearity is proposed in this paper. Firstly, the stability of equilibrium points of proposed autonomous jerk oscillator is investigated by analyzing the characteristic equation and the existence of Hopf bifurcation is verified using one of the two parameters as a bifurcation parameter. By tuning its two parameters, various dynamical behaviors are found in the proposed autonomous jerk oscillator including periodic attractor, one-scroll chaotic attractor, and coexistence between chaotic and periodic attractors. The proposed autonomous jerk oscillator has period-doubling route to chaos with the variation of one of its parameters and reverse period-doubling route to chaos with the variation of its other parameter. The proposed autonomous jerk oscillator is modelled on Field Programmable Gate Array (FPGA) and the FPGA chip statistics and phase portraits are derived. The chaotic and coexistence of attractors generated in the proposed autonomous jerk oscillator are confirmed by FPGA implementation of the proposed autonomous jerk oscillator. A good qualitative agreement is illustrated between the numerical and FPGA results. Finally synchronization of unidirectional coupled identical proposed autonomous jerk oscillators is achieved using adaptive sliding mode control method.
MSC:
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
93B12 Variable structure systems
93D21 Adaptive or robust stabilization
Software:
FOMNE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 2, 130-141, (1963) · Zbl 1417.37129
[2] Tamaševičius, A.; Čenys, A.; Mykolaitis, G.; Namajunas, A.; Lindberg, E., Hyperchaotic oscillator with gyrators, IEEE Electronics Letters, 33, 7, 542-544, (1997)
[3] Lakshmanan, M.; Senthilkumar, D. V., Dynamics of Nonlinear Time-Delay Systems. Dynamics of Nonlinear Time-Delay Systems, Springer Series in Synergetics, (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1230.37001
[4] Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L. V., A chaotic circuit based on Hewlett-Packard memristor, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22, 2, (2012) · Zbl 1331.34074
[5] Li, C.-L.; Li, H.-M.; Li, W.; Tong, Y.-N.; Zhang, J.; Wei, D.-Q.; Li, F.-D., Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria, AEÜ - International Journal of Electronics and Communications, 84, 199-205, (2018)
[6] Lathrop, D., Physics Today, 68, 4, 54-55, (2015)
[7] Muthuswamy, B.; Banerjee, S., Designing Hardware for FPGAs, A Route to Chaos Using FPGAs. A Route to Chaos Using FPGAs, Emergence, Complexity and Computation, 16, 29-53, (2015), Cham: Springer International Publishing, Cham
[8] Pham, V.-T.; Jafari, S.; Volos, C.; Gotthans, T.; Wang, X.; Hoang, D. V., A chaotic system with rounded square equilibrium and with no-equilibrium, Optik - International Journal for Light and Electron Optics, 130, 365-371, (2017)
[9] Nazarimehr, F.; Rajagopal, K.; Kengne, J.; Jafari, S.; Pham, V.-T., A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria, Chaos, Solitons & Fractals, 111, 108-118, (2018) · Zbl 1392.34048
[10] Sprott, J. C., Some simple jerk functions, American Journal of Physics, 65, 6, 537-543, (1997)
[11] Eichhorn, R.; Linz, S. J.; Hänggi, P., Simple polynomial classes of chaotic jerky dynamics, Chaos, Solitons & Fractals, 13, 1, 1-15, (2002) · Zbl 0993.37019
[12] Malasoma, J.-M., What is the simplest dissipative chaotic jerk equation which is parity invariant?, Physics Letters A, 264, 5, 383-389, (2000) · Zbl 0947.34031
[13] Schot, S. H., Jerk: the time rate of change of acceleration, American Journal of Physics, 46, 11, 1090-1094, (1978)
[14] Sprott, J. C., Elegant Chaos: Algebraically Simple Chaotic Flows, (2010), World Scientific · Zbl 1222.37005
[15] Yalçin, M. E., Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions, Chaos, Solitons & Fractals, 34, 5, 1659-1666, (2007)
[16] Ma, J.; Wu, X. Y.; Chu, R. T.; Zhang, L., Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice, Nonlinear Dynamics, 76, 4, 1951-1962, (2014)
[17] Sprott, J. C., A new chaotic jerk circuit, IEEE Transactions on Circuits and Systems II: Express Briefs, 58, 4, 240-243, (2011)
[18] Volos, C.; Akgul, A.; Pham, V.-T.; Stouboulos, I.; Kyprianidis, I., A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme, Nonlinear Dynamics, 89, 2, 1047-1061, (2017)
[19] Vaidyanathan, S.; Volos, C.; Pham, V.-T.; Madhavan, K.; Idowu, B. A., Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities, Archives of Control Sciences, 24, 3, 375-403, (2014) · Zbl 1307.93208
[20] Pisarchik, A. N.; Feudel, U., Control of multistability, Physics Reports, 540, 4, 167-218, (2014) · Zbl 1357.34105
[21] Luo, X.; Small, M.; Danca, M.-F.; Chen, G., On a dynamical system with multiple chaotic attractors, International Journal of Bifurcation and Chaos, 17, 9, 3235-3251, (2007) · Zbl 1185.37081
[22] Njitacke, Z. T.; kengne, J.; Fotsin, H. B.; NguomkamNegou, A.; Tchiotsop, D., Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit, Chaos, Solitons & Fractals, 99, (2017)
[23] Bao, B.-C.; Xu, Q.; Bao, H.; Chen, M., Extreme multistability in a memristive circuit, IEEE Electronics Letters, 52, 12, 1008-1010, (2016)
[24] Bao, B.; Jiang, T.; Xu, Q.; Chen, M.; Wu, H.; Hu, Y., Coexisting infinitely many attractors in active band-pass filter-based memristive circuit, Nonlinear Dynamics, 86, 3, 1711-1723, (2016)
[25] Massoudi, A.; Mahjani, M. G.; Jafarian, M., Multiple attractors in Koper-Gaspard model of electrochemical periodic and chaotic oscillations, Journal of Electroanalytical Chemistry, 647, 1, 74-86, (2010)
[26] Pham, V.-T.; Volos, C.; Jafari, S.; Kapitaniak, T., Coexistence of hidden chaotic attractors in a novel no-equilibrium system, Nonlinear Dynamics, 87, 3, 2001-2010, (2017)
[27] Njitacke, Z. T.; Kengne, J.; Nguomkam, N. A.; Fouodji, T. M.; Fotsin, H. B., Coexistence of multiple attractorsand crisis route to chaos in a novel chaotic jerk circuit, International Journal of Bifurcation and Chaos, 25, 1550052-1550060, (2015)
[28] Kengne, J.; Njitacke, Z. T.; Fotsin, H. B., Dynamical analysis of a simple autonomous jerk system with multiple attractors, Nonlinear Dynamics, 83, 1-2, 751-765, (2016)
[29] Kengne, J.; Nguomkam Negou, A.; Njitacke, Z. T., Antimonotonicity, chaos and multiple attractors in a novel autonomous jerk circuit, International Journal of Bifurcation and Chaos, 27, 7, (2017) · Zbl 1370.34086
[30] Njitacke, Z. T.; kengne, J.; Kamdjeu Kengne, L., Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit, Chaos, Solitons & Fractals, 105, 77-91, (2017)
[31] Kengne, J.; Negou, A. N.; Tchiotsop, D., Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit, Nonlinear Dynamics, 88, 4, 2589-2608, (2017)
[32] Tlelo-Cuautle, E.; Pano-Azucena, A. D.; Rangel-Magdaleno, J. J.; Carbajal-Gomez, V. H.; Rodriguez-Gomez, G., Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs, Nonlinear Dynamics, 85, 4, 2143-2157, (2016)
[33] Rajagopal, K.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Koyuncu, I., Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses, Chaos, Solitons & Fractals, 103, 476-487, (2017)
[34] Dong, E.; Liang, Z.; Du, S.; Chen, Z., Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement, Nonlinear Dynamics, 83, 1-2, 623-630, (2016)
[35] Ismail, S. M.; Said, L. A.; Rezk, A. A.; Radwan, A. G.; Madian, A. H.; Abu-Elyazeed, M. F.; Soliman, A. M., Generalized fractional logistic map encryption system based on FPGA, AEÜ - International Journal of Electronics and Communications, 80, 114-126, (2017)
[36] Tlelo-Cuautle, E.; Rangel-Magdaleno, J. J.; Pano-Azucena, A. D.; Obeso-Rodelo, P. J.; Nunez-Perez, J. C., FPGA realization of multi-scroll chaotic oscillators, Communications in Nonlinear Science and Numerical Simulation, 27, 1–3, 66-80, (2015)
[37] Xu, Y.-M.; Wang, L.-D.; Duan, S.-K., A memristor-based chaotic system and its field programmable gate array implementation, Acta Physica Sinica, 65, 12, (2016)
[38] Tlelo-Cuautle, E.; de la Fraga, L. G.; Pham, V.-T.; Volos, C.; Jafari, S.; Quintas-Valles, A. D. J., Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points, Nonlinear Dynamics, 89, 2, 1129-1139, (2017)
[39] Wei, Z.; Akgul, A.; Kocamaz, U. E.; Moroz, I.; Zhang, W., Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo, Chaos, Solitons & Fractals, 111, (2018) · Zbl 1392.93017
[40] Valli, D.; Muthuswamy, B.; Banerjee, S.; Ariffin, M.; Wahab, A.; Ganesan, K.; Subramaniam, C.; Kurths, J., Synchronization in coupled Ikeda delay systems, The European Physical Journal Special Topics, 223, 8, 1465-1479, (2014)
[41] Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash, Hyperchaotic Chameleon: Fractional Order FPGA Implementation, Complexity, 2017, (2017) · Zbl 1367.93123
[42] Rajagopal, Karthikeyan; Guessas, Laarem; Vaidyanathan, Sundarapandian; Karthikeyan, Anitha; Srinivasan, Ashokkumar, Dynamical Analysis and FPGA Implementation of a Novel Hyperchaotic System and Its Synchronization Using Adaptive Sliding Mode Control and Genetically Optimized PID Control, Mathematical Problems in Engineering, 2017, (2017) · Zbl 1367.93128
[43] Rajagopal, Karthikeyan; Guessas, Laarem; Karthikeyan, Anitha; Srinivasan, Ashokkumar; Adam, Girma, Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization, Complexity, 2017, (2017) · Zbl 1367.93128
[44] Rajagopal, K.; Karthikeyan, A.; Srinivasan, A. K., FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization, Nonlinear Dynamics, 87, 4, 2281-2304, (2017)
[45] Bahi, J. M.; Fang, X.; Guyeux, C.; Larger, L., FPGA design for pseudorandom number generator based on chaotic iteration used in information hiding application, Applied Mathematics & Information Sciences, 7, 6, 2175-2188, (2013)
[46] Chen, C.; Ma, H.; Chen, H.; Meng, Y.; Ding, Q., FPGA implementation of a UPT chaotic signal generator for image encryption, Pacific Science Review A: Natural Science and Engineering, 17, 3, 97-102, (2015)
[47] Barakat, M. L.; Radwan, A. G.; Salama, K. N., Hardware realization of chaos based block cipher for image encryption, Proceedings of the 2011 23rd International Conference on Microelectronics, ICM 2011
[48] Atteya, A. M.; Madian, A. H., A hybrid Chaos-AES encryption algorithm and its impelmention based on FPGA, Proceedings of the 2014 12th IEEE International New Circuits and Systems Conference, NEWCAS 2014
[49] Kingni, S. T.; Pham, V.-T.; Jafari, S.; Woafo, P., A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form, Chaos, Solitons & Fractals, 99, 209-218, (2017) · Zbl 1373.34072
[50] Idowu, B. A.; Vincent, U. E.; Njah, A. N., Synchronization of chaos in non-identical parametrically excited systems, Chaos, Solitons & Fractals, 39, 5, 2322-2331, (2009) · Zbl 1197.37031
[51] Sundarapandian, V.; Karthikeyan, R., Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control, European Journal of Scientific Research, 64, 1, 94-106, (2011)
[52] Sundarapandian, V.; Karthikeyan, R., Adaptive anti-synchronization of Uncertain Tigan and Li Systems, Journal of Engineering and Applied Sciences, 7, 1, 45-52, (2012)
[53] Majidabad, S. S.; Shandiz, H. T., Discrete-time Terminal Sliding Mode Control of Chaotic Lorenz System, Journal of Control and Systems Engineering, 1, 1, 1-8, (2013)
[54] Vaidyanathan, S., A new 3-D jerk chaotic system with two cubic nonlinearities and its adaptive backstepping control, Archives of Control Sciences. Polish Academy of Sciences. Committee of Automatic Control and Robotics, 27(63), 3, 409-439, (2017)
[55] Onma, O. S.; Olusola, O. I.; Njah, A. N., Control and Synchronization of Chaotic and Hyperchaotic Lorenz Systems via Extended Backstepping Techniques, Journal of Nonlinear Dynamics, 2014, (2014) · Zbl 1364.37062
[56] Wang, B.; Li, Y.; Zhu, D. L., Simplified sliding mode of a novel class of four-dimensional fractional-order chaos, International Journal of Control and Automation, 8, 8, 425-438, (2015)
[57] Yin, C.; Dadras, S.; Zhong, S.-M.; Chen, Y., Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Applied Mathematical Modelling, 37, 4, 2469-2483, (2013) · Zbl 1349.93237
[58] Liu, H.; Yang, J., Sliding-mode synchronization control for uncertain fractional-order chaotic systems with time delay, Entropy, 17, 6, 4202-4214, (2015)
[59] Wang, S.; Yu, Y. G.; Diao, M., Hybrid projective synchronization of chaotic fractional order systems with different dimensions, Physica A: Statistical Mechanics and its Applications, 389, 21, 4981-4988, (2010)
[60] Slotine, J.; Li, W., Applied Nonlinear Control, (1991), New Jersey, NJ, USA: Prentice Hall, New Jersey, NJ, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.