zbMATH — the first resource for mathematics

Laplacians on spheres. (English) Zbl 1405.43007
Authors’ abstract: Spheres can be written as homogeneous spaces \(G/H\) for compact Lie groups in a small number of ways. In each case, the decomposition of \(L^2(G/H)\) into irreducible representations of \(G\) contains interesting information. We recall these decompositions, and see what they can reveal about the analogous problem for noncompact real forms of \(G\) and \(H\).

43A85 Harmonic analysis on homogeneous spaces
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
Full Text: DOI
[1] Atlas of Lie Groups and Representations Software Package (2017). http://www.liegroups.org. Accessed 25 July 2018
[2] Barbasch, D.; Vogan, D.; Trombi, PC (ed.), Weyl group representations and nilpotent orbits, No. 40, 21-33, (1983), Boston, Basel, Stuttgart
[3] Borel, A., Le plan projectif des octaves et les sphères comme espaces homogènes, C. R. Acad. Sci. Paris, 230, 1378-1380, (1950) · Zbl 0041.52203
[4] Helgason, S., Differential operators on homogeneous spaces, Acta Math., 102, 239-299, (1959) · Zbl 0146.43601
[5] Helgason, S., Invariant differential equations on homogeneous manifolds, Bull. Am. Math. Soc., 83, 751-774, (1977) · Zbl 0377.43009
[6] Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000)
[7] Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, second edn. Birkhäuser, Boston (2002) · Zbl 1075.22501
[8] Kobayashi, T., Singular unitary representations and discrete series for indefinite Stiefel manifolds U(p, q;F)/U(p-m, q;F), Mem. Am. Math. Soc., 95, vi+106, (1992) · Zbl 0752.22007
[9] Kobayashi, T., Discrete decomposability of the restriction of Aq(\(\lambda \)) with respect to reductive subgroups and its applications, Invent. Math., 117, 181-205, (1994) · Zbl 0826.22015
[10] Kobayashi, T.; Adams, J. (ed.); Lian, B. (ed.); Sahi, S. (ed.), Branching problems of Zuckerman derived functor modules, No. 557, 23-40, (2011), Providence · Zbl 1236.22006
[11] Kobayashi, T.; Cogdell, J. (ed.); Kim, J-L (ed.); Zhu, C-B (ed.), Global analysis by hidden symmetry, No. 323, 359-397, (2017), Cham
[12] Koornwinder, T.H.: Invariant differential operators on nonreductive homogeneous spaces, i+15 pp. arXiv:math/0008116 [math.RT]
[13] Krötz, B., Kuit, J.J., Opdam, E.M., Schlichtkrull, H.: The infinitesimal characters of discrete series for real spherical spaces, 40 pp (2017). arXiv:1711.08635 [mathRT]
[14] Montgomery, D.; Samelson, H., Transformation groups of spheres, Ann. Math. (2), 44, 454-470, (1943) · Zbl 0063.04077
[15] Oniščik, A.L.: Decompositions of reductive Lie groups, Mat. Sb. (N.S.), vol. 80 (122), pp. 553-599 (1969) (Russian); English transl., Math. USSR Sb. vol. 9, pp. 515-554 (1969) · Zbl 0227.22013
[16] Rossmann, W., Analysis on real hyperbolic spaces, J. Funct. Anal., 30, 448-477, (1978) · Zbl 0395.22014
[17] Strichartz, RS, Harmonic analysis on hyperboloids, J. Funct. Anal., 12, 341-383, (1973) · Zbl 0253.43013
[18] Vogan, DA, The unitary dual of GL(n) over an archimedean field, Invent. Math., 83, 449-505, (1986) · Zbl 0598.22008
[19] Vogan, DA, Unitarizability of certain series of representations, Ann. Math., 120, 141-187, (1984) · Zbl 0561.22010
[20] Vogan, DA; Okamoto, K. (ed.); Oshima, T. (ed.), Irreducibility of discrete series representations for semisimple symmetric spaces, No. 14, 191-221, (1988), Boston
[21] Vogan, DA, The unitary dual of G2, Invent. Math., 116, 677-791, (1994) · Zbl 0808.22003
[22] Vogan, DA; Zuckerman, G., Unitary representations with non-zero cohomology, Compos. Math., 53, 51-90, (1984) · Zbl 0692.22008
[23] Wolf, J., The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Am. Math. Soc, 75, 1121-1237, (1969) · Zbl 0183.50901
[24] Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.