zbMATH — the first resource for mathematics

Surrogate-based parameter inference in debris flow model. (English) Zbl 1407.62447
Summary: This work tackles the problem of calibrating the unknown parameters of a debris flow model with the drawback that the information regarding the experimental data treatment and processing is not available. In particular, we focus on the evolution over time of the flow thickness of the debris with dam-break initial conditions. The proposed methodology consists of establishing an approximation of the numerical model using a polynomial chaos expansion that is used in place of the original model, saving computational burden. The values of the parameters are then inferred through a Bayesian approach with a particular focus on inference discrepancies that some of the important features predicted by the model exhibit. We build the model approximation using a preconditioned non-intrusive method and show that a suitable prior parameter distribution is critical to the construction of an accurate surrogate model. The results of the Bayesian inference suggest that utilizing directly the available experimental data could lead to incorrect conclusions, including the over-determination of parameters. To avoid such drawbacks, we propose to base the inference on few significant features extracted from the original data. Our experiments confirm the validity of this approach, and show that it does not lead to significant loss of information. It is further computationally more efficient than the direct approach, and can avoid the construction of an elaborate error model.

62P35 Applications of statistics to physics
62F15 Bayesian inference
Full Text: DOI
[1] Alexanderian, A.; Maître, OPL; Najm, H.; Iskandarani, M.; Knio, O., Multiscale stochastic preconditioners in non-intrusive spectral projection, J. Sci. Comput., 50, 306-340, (2012) · Zbl 1242.65009
[2] Alexanderian, A.; Rizzi, F.; Rathinam, M.; Maître, OL; Knio, O., Preconditioned Bayesian regression for stochastic chemical kinetics, J. Sci. Comput., 58, 592-626, (2014) · Zbl 1296.65009
[3] Anderson, H.L.: Metropolis, Monte Carlo and the MANIAC. Los Alamos Science (1986)
[4] Berveiller, M.: Stochastic Finite Elements: Intrusive and Non Intrusive Methods for Reliability Analysis. Ph.D. Thesis, Universite Blaise Pascal, Clermont-Ferrand (2005)
[5] Bouchut, F.; Fernández-Nieto, E.; Mangeney, A.; Narbona-Reina, G., A two-phase two-layer model for fluidized granular flows with dilatancy effects, J. Fluid Mech., 801, 166-221, (2016) · Zbl 1445.76087
[6] Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs (1994)
[7] Caflisch, RE, Monte Carlo and quasi-monte carlo methods, Acta Numerica, 7, 1-49, (1998) · Zbl 0949.65003
[8] Cameron, RH; Martin, WT, The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. Math., 48, 385-392, (1947) · Zbl 0029.14302
[9] Canuto, C., Hussaini, M.Y., Quateroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domain. Springer, Berlin (2006)
[10] Conn, AR; Gould, NIM; Toint, PL, A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal., 28, 545-572, (1991) · Zbl 0724.65067
[11] Crestaux, T.; Le maître, OP; Martinez, JM, Polynomial chaos expansion of sensitivity analysis, J. Rel. Eng. Syst. Saf., 94, 1161-1182, (2009)
[12] Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian Data Analysis, 3rd edn. Chapman and hall/CRC, London (2013)
[13] George, D.L.: Flume problems. https://github.com/dlgeorge/flume/tree/master/GateRelease1/ (2016)
[14] George, DL; Iverson, RM, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc., 470, 20130820, (2014) · Zbl 1371.86007
[15] Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)
[16] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989) · Zbl 0721.68056
[17] Haario, H.; Saksman, E.; Tamminen, J., An adaptive metropolis algorithm, Bernoulli, 7, 223-242, (2001) · Zbl 0989.65004
[18] Hampton, J.; Doostan, A., Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression, Comput. Methods Appl. Mech. Eng., 290, 73-97, (2015)
[19] Host, G.: Simulated Annealing - Wiley StatsRef: Statistics Reference Online. Wiley, New York (2014)
[20] Isukapalli, S.: Uncertainty Analysis of Transport-Transformation Models. Ph.D. thesis, The State University of New Jersey, New Jersey (1999)
[21] Iverson, RM, The physics of debris flows, Rev. Geophys., 35, 245-296, (1997)
[22] Iverson, RM, Regulation of landslide motion by dilatancy and pore pressure feedback, J. Geophys. Res., 110, f02,015, (2005)
[23] Iverson, RM; George, DL, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proc. R. Soc. A, 470, 20130819, (2014) · Zbl 1371.86008
[24] Iverson, RM; Reid, ME; Iverson, NR; LaHusen, RG; Logan, M.; Mann, JE; Brien, DL, Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513-516, (2000)
[25] Jansen, MJW, Analysis of variance designs for model output, Comput. Phys. Commun., 117, 35-43, (1999) · Zbl 1015.68218
[26] Kennedy, MC; O’Hagan, A., Bayesian calibration of computer models, J. R. Stat. Soc. B, 63, 425-464, (2001) · Zbl 1007.62021
[27] Kowalski, J.; McElwaine, J., Shallow two-component gravity-driven flows with vertical variation, J. Fluid Mech., 714, 434-462, (2013) · Zbl 1284.76393
[28] Langenhove, JV; Lucor, D.; Belme, A., Robust uncertainty quantification using preconditioned least-squares polynomial approximations with l1-regularizations, Int. J. Uncertain. Quantif., 6, 57-77, (2016)
[29] Langseth, JO; LeVeque, RJ, A wave-propagation method for three-dimensional hyperbolic conservation laws, J. Comput. Phys., 165, 126-166, (2000) · Zbl 0967.65095
[30] Lawson, C.L.: Contribution to the Theory of Linear Least Maximum Approximations. Ph.D. thesis, University of California (1961)
[31] Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer, New York (2010) · Zbl 1193.76003
[32] Le Maître, OP; Reagan, MT; Najm, HN; Ghanem, RG; Knio, OM, A stochastic projection method for fluid flow. II. Random process, J. Comput. Phys., 181, 9-44, (2002) · Zbl 1052.76057
[33] LeVeque, RJ, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 627-665, (1996) · Zbl 0852.76057
[34] LeVeque, RJ, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys., 131, 327-353, (1997) · Zbl 0872.76075
[35] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). http://www.clawpack.org/book.html · Zbl 1010.65040
[36] Loh, WL, On latin hypercube sampling, Ann. Stat., 24, 2058-2080, (1996) · Zbl 0867.62005
[37] Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Providence (2001)
[38] Mai, CV; Sudret, B., Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping, SIAM/ASA J. Uncertain. Quantif., 5, 540-571, (2017) · Zbl 1375.65005
[39] Mandli, KT; Ahmadia, AJ; Berger, M.; Calhoun, D.; George, DL; Hadjimichael, Y.; Ketcheson, DI; Lemoine, GI; LeVeque, RJ, Clawpack: building an open source ecosystem for solving hyperbolic PDEs, PeerJ Comput. Sci., 2, e68, (2016)
[40] Marzouk, YM; Najm, HN, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228, 1862-1902, (2009) · Zbl 1161.65308
[41] Marzouk, YM; Najm, HN; Rahn, LA, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 560-586, (2007) · Zbl 1120.65306
[42] Matlab optimization toolbox: The MathWorks, Natick, MA, USA (2016)
[43] Parzen, E., On estimation of a probability density function and mode, Ann. Math. Stat., 33, 1065-1076, (1962) · Zbl 0116.11302
[44] Polak, E.: Optimization: Algorithms and Consistent Approximations. Applied Mathematical Sciences, p. 9780387949710. Springer-Verlag, Berlin (1997)
[45] Iverson, RM; Logan, M.; LaHusen, RG; Berti, M., The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, f03005, (2010)
[46] Reagan, MT; Najm, HN; Ghanem, RG; Knio, OM, Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection, Combust. Flame, 132, 545-555, (2003)
[47] Rowe, PW, The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Roy. Soc. Lond., A269, 500-527, (1962)
[48] Saltelli, A., Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280-297, (2002) · Zbl 0998.65065
[49] Scales, JA; Gersztenkorn, A., Robust methods in inverse theory, Inverse Probl., 4, 1071, (1988) · Zbl 0672.65019
[50] Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw Hill, New York (1968)
[51] Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986)
[52] Sobol’, I., Sensitivity estimates for nonlinear mathematical models, Math. Modeling Comput. Exp., 1, 407-414, (1993) · Zbl 1039.65505
[53] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf., 93, 964-979, (2008)
[54] Tarantola, A.: Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics (2005) · Zbl 1074.65013
[55] Wiener, N., The homogeneous chaos, Am. J. Math., 60, 897-936, (1938) · JFM 64.0887.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.