Pagès, Gilles; Panloup, Fabien Weighted multilevel Langevin simulation of invariant measures. (English) Zbl 1404.60113 Ann. Appl. Probab. 28, No. 6, 3358-3417 (2018). Summary: We investigate a weighted multilevel Richardson-Romberg extrapolation for the ergodic approximation of invariant distributions of diffusions adapted from the one introduced in [V. Lemaire and the first author, Bernoulli 23, No. 4A, 2643–2692 (2017; Zbl 1383.65003)] for regular Monte Carlo simulation. In a first result, we prove under weak confluence assumptions on the diffusion, that for any integer \(R\geq2\), the procedure allows us to attain a rate \(n^{\frac{R}{2R+1}}\) whereas the original algorithm convergence is at a weak rate \(n^{1/3}\). Furthermore, this is achieved without any explosion of the asymptotic variance. In a second part, under stronger confluence assumptions and with the help of some second-order expansions of the asymptotic error, we go deeper in the study by optimizing the choice of the parameters involved by the method. In particular, for a given \(\varepsilon>0\), we exhibit some semi-explicit parameters for which the number of iterations of the Euler scheme required to attain a mean-squared error lower than \(\varepsilon^{2}\) is about \(\varepsilon^{-2}\log(\varepsilon^{-1})\). { } Finally, we numerically test this multilevel Langevin estimator on several examples including the simple one-dimensional Ornstein-Uhlenbeck process but also a high dimensional diffusion motivated by a statistical problem. These examples confirm the theoretical efficiency of the method. Cited in 2 Documents MSC: 60J60 Diffusion processes 37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.) 65C05 Monte Carlo methods Keywords:ergodic diffusion; invariant measure; multilevel; ergodicity; Richardson-Romberg; Monte Carlo; PAC-Bayesian Citations:Zbl 1383.65003 PDF BibTeX XML Cite \textit{G. Pagès} and \textit{F. Panloup}, Ann. Appl. Probab. 28, No. 6, 3358--3417 (2018; Zbl 1404.60113) Full Text: DOI arXiv Euclid References: [1] Bhattacharya, R. N. (1982). On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete60 185–201. · Zbl 0468.60034 [2] Billingsley, P. (1978). Ergodic Theory and Information. Robert E. Krieger Publishing Co., Huntington, NY. Reprint of the 1965 original. · Zbl 0141.16702 [3] Dalalyan, A. S. and Tsybakov, A. B. (2012). Sparse regression learning by aggregation and Langevin Monte-Carlo. J. Comput. System Sci.78 1423–1443. · Zbl 1244.62054 [4] Duflo, M. (1997). Random Iterative Models. Applications of Mathematics (New York) 34. Springer, Berlin. Translated from the 1990 French original by Stephen S. Wilson and revised by the author. · Zbl 0868.62069 [5] Frikha, N. (2016). Multi-level stochastic approximation algorithms. Ann. Appl. Probab.26 933–985. · Zbl 1344.93111 [6] García Trillos, C. A. (2015). A decreasing step method for strongly oscillating stochastic models. Ann. Appl. Probab.25 986–1029. · Zbl 1316.60111 [7] Gilbarg, D. and Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 224. Springer, Berlin. · Zbl 0562.35001 [8] Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Oper. Res.56 607–617. · Zbl 1167.65316 [9] Giles, M. B. and Szpruch, L. (2014). Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. Ann. Appl. Probab.24 1585–1620. · Zbl 1373.65007 [10] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. · Zbl 0462.60045 [11] Krengel, U. (1985). Ergodic Theorems. De Gruyter Studies in Mathematics6. de Gruyter, Berlin. · Zbl 0575.28009 [12] Lamberton, D. and Pagès, G. (2002). Recursive computation of the invariant distribution of a diffusion. Bernoulli8 367–405. · Zbl 1006.60074 [13] Lamberton, D. and Pagès, G. (2003). Recursive computation of the invariant distribution of a diffusion: The case of a weakly mean reverting drift. Stoch. Dyn.3 435–451. · Zbl 1044.60069 [14] Lemaire, V. (2007). Behavior of the Euler scheme with decreasing step in a degenerate situation. ESAIM Probab. Stat.11 236–247. · Zbl 1181.60086 [15] Lemaire, V. and Pagès, G. (2017). Multilevel Richardson–Romberg extrapolation. Bernoulli23 2643–2692. · Zbl 1383.65003 [16] Lemaire, V., Pagès, G. and Panloup, F. (2015). Invariant measure of duplicated diffusions and application to Richardson–Romberg extrapolation. Ann. Inst. Henri Poincaré Probab. Stat.51 1562–1596. · Zbl 1329.60281 [17] Pagès, G. (2007). Multi-step Richardson–Romberg extrapolation: Remarks on variance control and complexity. Monte Carlo Methods Appl.13 37–70. [18] Pagès, G. and Panloup, F. (2009). Approximation of the distribution of a stationary Markov process with application to option pricing. Bernoulli15 146–177. · Zbl 1214.60036 [19] Pagès, G. and Panloup, F. (2014). A mixed-step algorithm for the approximation of the stationary regime of a diffusion. Stochastic Process. Appl.124 522–565. · Zbl 1284.60075 [20] Pagès, G. and Panloup, F. (2018). Supplement to “Weighted multilevel Langevin simulation of invariant measures.” DOI:10.1214/17-AAP1364SUPP. [21] Panloup, F. (2008). Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process. Ann. Appl. Probab.18 379–426. · Zbl 1136.60049 [22] Pardoux, E. and Veretennikov, A. Yu. (2001). On the Poisson equation and diffusion approximation. I. Ann. Probab.29 1061–1085. · Zbl 1029.60053 [23] Piccioni, M. and Scarlatti, S. (1994). An iterative Monte Carlo scheme for generating Lie group-valued random variables. Adv. in Appl. Probab.26 616–628. · Zbl 0820.68132 [24] Richardson, L. F. (1911). The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. Lond. Ser. A210 307–357. · JFM 42.0873.02 [25] Richardson, L. F. (1927). The deferred approach to the limit. Philos. Trans. R. Soc. Lond. Ser. A226 299–349. · JFM 53.0432.01 [26] Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B. Stat. Methodol.60 255–268. · Zbl 0913.60060 [27] Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli2 341–363. · Zbl 0870.60027 [28] Szpruch, L., Vollmer, S., Zygalakis, K. and Giles, M. B. (2016). Multi Level Monte Carlo methods for a class of ergodic stochastic differential equations. ArXiv e-print. Available at arXiv:1605.01384 [math.NA]. [29] Talay, D. (1990). Second order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep.29 13–36. · Zbl 0697.60066 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.